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Abstract: Humans are exposed to numerous compounds daily, some of which have adverse effects
on health. Computational approaches for modeling toxicological data in conjunction with machine
learning algorithms have gained popularity over the last few years. Machine learning approaches
have been used to predict toxicity-related biological activities using chemical structure descriptors.
However, toxicity-related proteomic features have not been fully investigated. In this study, we
construct a computational pipeline using machine learning models for predicting the most important
protein features responsible for the toxicity of compounds taken from the Tox21 dataset that is
implemented within the multiscale Computational Analysis of Novel Drug Opportunities (CANDO)
therapeutic discovery platform. Tox21 is a highly imbalanced dataset consisting of twelve in vitro
assays, seven from the nuclear receptor (NR) signaling pathway and five from the stress response
(SR) pathway, for more than 10,000 compounds. For the machine learning model, we employed a
random forest with the combination of Synthetic Minority Oversampling Technique (SMOTE) and the
Edited Nearest Neighbor (ENN) method (SMOTE+ENN), which is a resampling method to balance
the activity class distribution. Within the NR and SR pathways, the activity of the aryl hydrocarbon
receptor (NR-AhR) and the mitochondrial membrane potential (SR-MMP) were two of the top-
performing twelve toxicity endpoints with AUCROCs of 0.90 and 0.92, respectively. The top extracted
features for evaluating compound toxicity were analyzed for enrichment to highlight the implicated
biological pathways and proteins. We validated our enrichment results for the activity of the AhR
using a thorough literature search. Our case study showed that the selected enriched pathways
and proteins from our computational pipeline are not only correlated with AhR toxicity but also
form a cascading upstream/downstream arrangement. Our work elucidates significant relationships
between protein and compound interactions computed using CANDO and the associated biological
pathways to which the proteins belong for twelve toxicity endpoints. This novel study uses machine
learning not only to predict and understand toxicity but also elucidates therapeutic mechanisms at a
proteomic level for a variety of toxicity endpoints.

Keywords: machine learning; random forest; feature selection; structure–activity relationships;
high-throughput screening; enrichment analysis; proteomic signature; toxicity; drug behavior

1. Introduction

Exposure to persistent natural and synthetic environmental pollutants continues
to be a significant health concern [1]. With technological advances in computational
toxicology, systems biology, and bioinformatics, researchers and regulators have access
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to tools that allow for rapid assessment of toxic compounds, reducing the use of low-
throughput, expensive, and time-consuming in vivo animal testing [2,3]. High-throughput
screening (HTS) [4,5] has been utilized in conjunction with computational models to profile
compounds for potential adverse effects and assess how compounds interact with biological
systems. Furthermore, in the past few years, quantitative high-throughput screening (qHTS)
has emerged as a powerful tool to allow the study of toxicological pathways linked with
toxicity endpoints [6].

The Toxicology in the 21st Century (Tox21) program has been established as a col-
laborative effort among federal entities, including the National Center for Advancing
Translational Sciences (NCATS), the National Institute of Environmental Health Sciences
(NIEHS), the Environmental Protection Agency (EPA), and the Food and Drug Administra-
tion (FDA), to advance toxicity assessment. This program has applied qHTS to profile a
library of around 10,000 compounds, including but not limited to environmental hazards,
industrial chemicals, drugs, and food additives [7–10]. The Tox21 compound library was
run against a panel of seven nuclear receptors (NR) and five stress response (SR) pathway
assays, generating the most significant high-quality in vitro toxicity data to date [11]. Data
generated from Tox21 has been used to identify compounds that interact with specific
toxic pathways, including some not previously known [12–15]. This data has also been
used, together with chemical structure information, to train predictive machine learning
models to compute whether a chemical will elicit a particular toxicological outcome based
on in vitro findings [16–21]. Deep learning has achieved the best prediction performance in
toxicity prediction on the Tox21 data [22]. However, one major limitation of deep neural
networks is that they tend to mask the effective features for toxicity prediction.

We propose a novel approach to building a pipeline that predicts the essential proteins
implicated in in vivo toxicity, which are then fed into an enrichment analysis to assess
the mechanistic pathways contributing to each toxicity endpoint and provide a high-
level biological interpretation. To extract important protein feature descriptors which
contribute most to the target prediction, many feature selection techniques originating from
machine learning have been proposed [23–26]. Random forest [27], which is an embedded
feature selection technique, has emerged as an efficient and robust algorithm that can
address feature selection, even with a higher number of variables [28–30]. The random
forest approach constructs many decision trees during training and averages the predicted
values to obtain the final outputs. Due to the random exploration of features at each
node in the tree construction, random forest lends itself to feature selection. Determining
and assessing the most relevant feature descriptors between compounds and toxicity
endpoints on a mechanistic and proteomic scale will enable us to comprehensively evaluate
compound toxicity.

Previous studies using machine learning models on Tox21 data have shown that the
data is highly imbalanced, with a greater proportion of inactive or non-toxic compounds
for each toxicity assay than active ones [31–33]. Highly imbalanced data can be a problem
when training machine learning classification models, as the model becomes biased toward
the inactive class, resulting in a higher misclassification rate for the active class. Most of
the previous classification algorithms using Tox21 data have not handled the imbalanced
problem for toxicity prediction explicitly [31,32,34,35]. We propose an improved random
forest method for feature selection to find the relevant features for toxicity prediction,
i.e., random forest with the combination of the Synthetic Minority Oversampling Technique
(SMOTE) and the Edited Nearest Neighbor (ENN) method, aka SMOTE+ENN, a resampling
method to handle the imbalanced problem.

The Tox21 dataset has been well-studied using chemical descriptors as features to
understand toxicity [16,33]. In contrast, this study utilizes the Computational Analysis of
Novel Drug Opportunities (CANDO) platform to obtain the protein feature descriptors to
understand toxicity at the protein pathway level. CANDO is a multiscale shotgun drug
discovery, repurposing, and design platform which employs multitargeting to generate
proteomic scale interaction signatures for any small molecule, including approved drugs,
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against large libraries of protein structures from various organisms [36–49]. The proteomic
interaction signatures are analyzed to computationally assess compound similarity, with the
premise that drugs with similar signatures may treat the same diseases. Version 3 of the
platform now features several protein-related and drug-related biological entities, such as
protein pathways, protein-protein interactions, protein-disease associations, and adverse
drug reactions, further enhancing the ability to compare small molecule compounds in the
context of biological systems. CANDO has been validated in multiple indications with
an overall success rate of 58/163, not including 51 drug candidates with activity against
SARS-CoV-2 (out of 275 ranked predictions) extracted from in vitro and electronic health
record-based studies published in the literature [46]. However, CANDO has yet to be
employed explicitly to predict compound toxicity, despite how conducive this multiscale
framework is for that task.

Our study aims to improve toxicity prediction by combining the capabilities of ma-
chine learning, the CANDO platform, and enrichment analysis to identify the most effective
protein structures for predicting twelve toxicity endpoints from the Tox21 data and high-
lighting implicated biological pathways. We begin the study by pre-processing the data,
generating protein feature descriptors using CANDO, and performing dataset balancing.
Following this, we apply the random forest algorithm to select the top structural protein
descriptors and subject them to enrichment analysis to identify high-level biological entities
that explain the mechanisms through which the toxicity is induced. We provide a case
study of aryl hydrocarbon receptor (AhR) activation, comprehensively identifying the
pathways potentially responsible for its associated toxicity using only those identified via
enrichment analysis. Our approach of combining CANDO, machine learning, and feature
selection allows for a detailed understanding of compound behavior and a greater ability
to predict not only toxicity but also mechanistic etiology.

2. Results and Discussion

In this section, we present (1) a summary of the curated and prepossessed Tox21
datasets; (2) performance metrics of our computational algorithm on the Tox21 data; (3)
a comparison between our study and other published Tox21 studies; (4) the enriched
pathways for the twelve Tox21 assays; and (5) a case study of NR-AhR toxicity with
published literature supporting our computational results and enrichment analysis. Figure 1
provides a high-level overview of our study design (Section 4).

Figure 1. Overview of study workflow and pipeline for toxicity feature identification. As part of
the data pre-processing step, the twelve Tox21 assay datasets containing the SMILES strings and
activity class of the compounds were merged. The compounds were normalized and standardized
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using the MolVs library [50], built on RDKit where compound duplicates with ambiguous activity
labels (i.e., equally active and inactive labels for the same compound) were removed. Model features
were generated using a protein-compound interaction matrix via the CANDO platform. The data
containing the features and the class activity for each compound were generated for each of the twelve
assays and split into training and test sets. The SMOTE+ENN algorithm was applied to oversample
the minority class and obtain an augmented training subset used to train our random forest classifier.
The parameters for the random forest classifier were selected using tenfold cross-validation to attain
optimal model performance. The model was evaluated on the unseen test data with metrics such
as F1-score, recall, precision, specificity, balanced accuracy, AUCROC, and AUPRC to evaluate its
performance. The model was then used to obtain the top 100 important features (protein structures);
proteins were associated with pathways annotated in Reactome. The overrepresented pathways in
the top 100 proteins via enrichment analysis were identified. The enriched pathways for the NR-AhR
assay were analyzed as a case study, which illustrated that our unique proteomic feature selection
pipeline allows for a mechanistic understanding of compound toxicity.

2.1. Preprocessed Data

Table 1 shows the preprocessed Tox21 compounds and their activities measured by
twelve qHTS in vitro assays. The number of active and inactive compounds for each of
the twelve qHTS assays was computed, along with the imbalance ratio, which is the ratio
of the majority class (inactive non-toxic compounds) to the minority class (active toxic
compounds). The imbalance ratio varied greatly between the twelve assays, with the
inactive compounds being the predominant majority (ratio 10:1 or higher) compared to
the actives. The higher the imbalance ratio value, the more imbalanced the activity class
distribution for the assay. In the training datasets, the imbalance ratio ranged from 5.52
for the SR mitochondrial membrane potential (SR-MMP) assay up to 37.62 for the NR
peroxisome proliferator-activated receptor γ (NR-PPAR-γ) assay. The test datasets had
imbalanced ratios equivalent to or larger than those of their corresponding training datasets,
ranging from 5.06 for the SR antioxidant response element (SR-ARE) assay up to 69.75 for
the NR androgen receptor ligand-binding domain (NR-AR-LBD) assay.

Table 1. Details of compounds and their activity in the Tox21 dataset. Details are given for the
pre-proccessed Tox21 Data Challenge training and test sets, including the assay identifier, target,
and total number of compounds assayed, as well as the partitioning of the training and test sets.
We compute the imbalanced ratio (IR) for each assay, which is the ratio of the inactive non-toxic
compounds to the active toxic compounds. An imbalanced ratio value closer to one signifies a fairly
balanced class activity, and a value much greater than one signifies a very imbalanced class activity.
The imbalanced ratio values indicate that the Tox21 dataset is highly imbalanced and that model
performance can be improved by taking this into account.

In Vitro qHTS
Assay Identifier Target/Assay Number

of Compounds
Training Set Test Set

Inactive Active IR Inactive Active IR

NR-AhR Aryl hydrocarbon
receptor 7103 5777 734 7.87 521 71 7.34

NR-ER-LBD Estrogen receptor
(luciferase assay) 7509 6643 282 23.56 564 20 28.20

NR-ER Estrogen receptor 6630 5474 651 8.41 456 49 9.31

NR-Aromatase Aromatase 6286 5496 274 20.06 479 37 12.94

NR-PPAR-γ
Peroxisome

proliferator-activated
receptor γ

7039 6283 167 37.62 559 30 18.63

NR-AR Androgen receptor 7783 6958 252 27.61 561 12 46.75

NR-AR-LBD Androgen receptor
(luciferase assay) 7298 6521 211 30.90 558 8 69.75

SR-MMP Mitochondrial
membrane potential 6316 4899 888 5.52 474 55 8.62
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Table 1. Cont.

In Vitro qHTS
Assay Identifier Target/Assay Number

of Compounds
Training Set Test Set

Inactive Active IR Inactive Active IR

SR-ARE

Nuclear factor
(erythroid-derived 2)-like

2 antioxidant
responsive element

6339 4919 881 5.58 450 89 5.06

SR-ATAD5 Genotoxicity indicated
by ATAD5 7646 6787 256 26.51 569 34 16.73

SR-p53 DNA damage
p53-pathway 7358 6351 409 15.53 560 38 14.74

SR-HSE Heat shock factor
response element 7040 6144 305 20.14 574 17 33.76

2.2. Comparison to Other Tox21 Studies

Our study used the random forest classifier to avoid overfitting and enhance perfor-
mance. Further, it was a commonly used model by participating teams in the Tox21 Data
Challenge. Two of the winning teams used a random forest model to achieve the best
performance in predicting compound toxicity against the NR-androgen receptor (NR-AR),
NR-aromatase, SR-p53 [20], and NR estrogen receptor alpha ligand-binding domain (NR-
ER-LBD) assay [19]. The area under the receiver operating characteristic curve (AUCROC)
and the winning teams’ balanced accuracy scores were provided as evaluation metrics
during the Tox21 Data Challenge.

Banerjee et al. [32] highlighted the importance of using sampling methods when train-
ing a classifier on imbalanced chemical data, such as the Tox21 dataset. This is important
because non-sampling methods on imbalanced data result in poor recall performance
due to the classifier favoring the majority inactive class [32]. Another study on a similar
methodology employed a random forest classifier with different resampling techniques
and showed that the random forest with the SMOTE+ENN classifier performed the best
on the Tox21 data [31]. Therefore, in this study, we implemented the random forest and
SMOTE+ENN algorithms to train our model for feature selection and handle class im-
balance. The SMOTE+ENN classifier was applied to resample the training data, and the
random forest classifier was then fit to the training data. The trained model was used
to make predictions on the test data and was evaluated using classification performance
metrics. This approach was applied to each of the twelve assay datasets.

Table 2 reports the model evaluation metrics for the random forest classification model
for twelve qHTS assays. The reported values varied depending on metrics and assays.
The assays with a more favorable imbalance ratio perform much better. Overall, our
modeling approach achieved decent performance measured by AUCROC ≥ 0.7, except for
NR-AR-LBD, which had very few active labels, as shown by its high imbalance ratio of
30.9 in the training set. The AUCROC has the highest value of 0.92 for the SR-MMP assay,
with the lowest imbalance ratio of 5.52 in the training set. This is not surprising as the
greater the number of active labels, the better the model’s discriminatory power between
the active and inactive classes. The SR-MMP assay also had the highest F1-score of 0.49 and
the highest recall and high precision. The area under the precision-recall curve (AUPRC)
score was also high for SR-MMP, with a score of 0.60, signifying that the model could
handle the positive samples correctly.
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Table 2. Model evaluation metrics computed for the twelve Tox21 assay datasets. For each assay,
the model’s performance using F1-score, precision, recall, specificity, Mathews correlation coefficient
(MCC), balanced accuracy (BA), AUROC, and AUPRC metrics is given. BA is the average of the recall
and specificity and is a useful metric when evaluating imbalanced data. The overall performance of
our pipeline is promising, particularly in terms of BA, depending on assays and metrics considered.

Assays F1 Precision Recall AUCROC AUPRC BA MCC Specificity Accuracy

NR-AhR 0.471 0.318 0.901 0.896 0.560 0.819 0.438 0.737 0.757

NR-ER-LBD 0.342 0.333 0.350 0.810 0.272 0.663 0.318 0.975 0.954

NR-ER 0.420 0.301 0.694 0.806 0.414 0.760 0.370 0.827 0.814

NR-Aromatase 0.317 0.250 0.432 0.795 0.282 0.666 0.260 0.900 0.866

NR-PPAR-γ 0.286 0.308 0.267 0.745 0.241 0.617 0.251 0.968 0.932

NR-AR 0.261 0.273 0.250 0.706 0.196 0.618 0.178 0.988 0.970

NR-AR-LBD 0.000 0.000 0.000 0.618 0.036 0.493 -0.014 0.986 0.972

SR-MMP 0.488 0.331 0.927 0.916 0.597 0.855 0.478 0.783 0.798

SR-ARE 0.425 0.305 0.697 0.757 0.403 0.692 0.294 0.687 0.688

SR-ATAD5 0.325 0.283 0.382 0.744 0.230 0.662 0.282 0.942 0.910

SR-p53 0.235 0.159 0.447 0.830 0.198 0.643 0.182 0.839 0.814

SR-HSE 0.286 0.308 0.267 0.759 0.240 0.617 0.251 0.968 0.932

We compared the performance of our approach with those employed in the Dmlab [20],
and Microsomes [19], which are the top two performing random forest models in the Tox21
Data Challenge. We also compared our results with random forest with SMOTEENN
(SMN), which was the best random forest-based classifier employed by Idakwo et al. [31].
Since AUCROC and balanced accuracy are the only accuracy measures in the Tox21 Data
Challenge, we only evaluated these two metrics in our results. Figure 2 depicts a com-
parison of the model performance in terms of AUCROC and the balanced accuracy of the
other studies and our study. On average, our model performed comparably to the Dmlab,
Microsomes, and SMN model approaches based on the AUCROC and balanced accuracy
metrics across most of the twelve assays. Yet our model allows for interpretability, as it
enables the extraction of important proteins implicated in each toxicity assay.

Despite the performance similarity with other studies, it is not a direct comparison
since our algorithm was used for feature selection, while the compared random forest-based
models are employed for prediction. Furthermore, such a comparison requires using the
same data pre-processing methodology and feature descriptors when training a model,
which was not done in this case.

Figure 2. Cont.
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Figure 2. Comparison of model performance across the twelve Tox21 assays. The performance
of the twelve Tox21 assays is evaluated using AUROC (top) and balanced accuracy (bottom). Al-
though AUCROC is widely used as a binary classifier evaluation metric, it can be misleading for
imbalanced classification with few examples of the minority class. We compared our results in blue
to the three other studies which utilized a random forest-based classifier. (The microsome study does
not report both AUCROC and BA for the NR-AR, NR-AR-LBD, and SR-MMP assays and the BA for
NR-PPAR-γ.) Our model performs comparably to previous methods yet allows for the extraction of
important protein features implicated in each toxicity endpoint.

2.3. Enrichment Analysis

The top 100 most important protein features as determined by the random forest
algorithm for each Tox21 endpoint were subjected to enrichment analysis in the context of
protein pathways. The average number of enriched entities obtained for the twelve toxicity
endpoints was 36, with the minimum being 13 for NR-PPAR-γ and the maximum being 59
for SR-ATAD5. The exact proteins and pathways highlighted for the NR-AhR activation
assay are provided in Table 3, including the total number of proteins in the pathway and
the calculated p-value. The full names and UniProt identifiers of those genes are available
in Table S1.

Table 3. Important mechanistic pathways and their proteins for the toxicity endpoint of NR-AhR.
The name of the pathway, the number of proteins present in the pathway according to Reactome,
the proteins in the pathway selected by the model as important for predicting AhR toxicity, and the
p-value from the enrichment analysis are shown. The p-value is derived using the hypergeometric
distribution based on how many total important proteins were selected by the model, how many
total proteins are present in the pathway, and the total number of proteins in the human proteome.
The value shown is the probability of selecting at least that number of proteins present in the pathway.
These results indicate that our pipeline is capable of extracting higher level biological explanations
associated with AhR toxicity that have been validated via the literature.

Pathway Total Proteins Selected Proteins
(Gene IDs) p-Value

Nonhomologous End-Joining (NHEJ) 52 RNF8,UBE2N,
BRCA1,NSD2 1.36 × 10−6

Recruitment and ATM-mediated phosphorylation of repair
and signaling proteins at DNA double strand breaks 59 RNF8,UBE2N,

BRCA1,NSD2 2.22 × 10−6

TRAF6 mediated NF-κB activation 24 TRAF2,TRAF6 2.35 × 10−6

DNA Double Strand Break Response 60 RNF8,UBE2N,
BRCA1,NSD2 2.36 × 10−6
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Table 3. Cont.

Pathway Total Proteins Selected Proteins
(Gene IDs) p-Value

TRAF6 mediated IRF7 activation 28 TRAF2,TRAF6 3.73 × 10−6

Neurofascin interactions 7 NRCAM,CNTN1 5.28 × 10−6

DDX58/IFIH1-mediated induction of interferon-alpha/beta 77 TRAF2,RNF125,
TRAF6,DDX58 6.04 × 10−6

RUNX3 regulates YAP1-mediated transcription 8 TEAD1,TEAD4 7.01 × 10−6

SUMOylation of transcription cofactors 42 RNF2,UHRF2,PIAS3 1.22 × 10−5

IRAK1 recruits IKK complex 14 TRAF6,UBE2N 2.21 × 10−5

IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation 14 TRAF6,UBE2N 2.21 × 10−5

YAP1- and WWTR1 (TAZ)-stimulated gene expression 14 TEAD1,TEAD4 2.21 × 10−5

TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling 14 TRAF6,UBE2N 2.21 × 10−5

TICAM1, RIP1-mediated IKK complex recruitment 19 TRAF6,UBE2N 4.05 × 10−5

Signal transduction by L1 20 NRP1,NCAM1 4.48 × 10−5

G2/M DNA damage checkpoint 78 RNF8,UBE2N,BRCA1,
NSD2,RPA1 4.64 × 10−5

Regulation of FZD by ubiquitination 21 LRP6,LGR5 4.92 × 10−5

IKK complex recruitment mediated by RIP1 22 TRAF6,UBE2N 5.39 × 10−5

JNK (c-Jun kinases) phosphorylation and
activation mediated by activated human TAK1 22 TRAF6,UBE2N 5.39 × 10−5

Processing of DNA double-strand break ends 81 RNF8,UBE2N,BRCA1,
NSD2,RPA1 5.55 × 10−5

Activated TAK1 mediates p38 MAPK activation 23 TRAF6,UBE2N 5.87 × 10−5

Formation of Incision Complex in GG-NER 43 UBE2N,PIAS3,
RBX1,RPA1 6.52 × 10−5

Recognition of DNA damage by
PCNA-containing replication complex 31 RBX1,RPA1 1.03 × 10−5

TAK1 activates NFkB by phosphorylation
and activation of IKKs complex 32 TRAF6,UBE2N 1.10 × 10−5

DNA strand elongation 32 GINS2,RPA1 1.10 × 10−5

Sialic acid metabolism 33 GLB1,NANP 1.16 × 10−5

Transcriptional Regulation by E2F6 34 RNF2,BRCA1 1.23 × 10−5

Negative regulators of DDX58/IFIH1 signaling 34 RNF125,DDX58 1.23 × 10−5

NOD1/2 Signaling Pathway 35 TRAF6,UBE2N 1.30 × 10−5

RUNX1 interacts with co-factors whose
precise effect on RUNX1 targets is not known 36 RNF2,PCGF5 1.37 × 10−5

HDR through Single Strand Annealing (SSA) 37 BRCA1,RPA1 1.44 × 10−5

Ovarian tumor domain proteases 38 TRAF6,DDX58 1.51 × 10−5

Presynaptic phase of homologous DNA
pairing and strand exchange 39 BRCA1,RPA1 1.58 × 10−5

Formation of Fibrin Clot (Clotting Cascade) 39 PROCR,GP1BB 1.58 × 10−5

2.4. Case Study for NR-AhR

We selected the NR-AhR endpoint as a case study due to its model performance
relative to other NR assays. AhR is a helix-loop-helix ligand-activated transcription factor
that binds a wide range of ligands, including environmental pollutants, such as poly-
cyclic aromatic hydrocarbons (PAHs) and polyhalogenated aromatic hydrocarbons [51].
The latter class of compounds includes halogenated dibenzo-p-dioxins, also known as
dioxins. One of the dioxin compounds is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),
which is the most commonly used environmental agent for studying AhR-mediated bio-
chemical and toxic responses because of its high affinity to AhR [52]. It also causes a
wide range of toxic effects, including immunosuppression and tumor promotion [53,54].
Previous studies have suggested that AhR signaling elicits numerous critical biological
processes, including the modification of the cell cycle, cell proliferation, immune responses,
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and tumorigenesis [55–58]. Toxicity induced via AhR activation arises via genomic and
non-genomic signaling pathways (Figure 3). The genomic signaling pathway involves
the ligand-activated AhR translocating in the nucleus and dimerizing with AhR nuclear
translocator (ARTN). The activated AhR/ARNT heterodimer complex interacts directly or
indirectly with DNA by binding to recognition sequences located in the promoter regions of
dioxin-responsive genes. This leads to adverse changes in cellular processes, leading to the
toxic response [59,60]. The non-genomic signaling is due to the suppression or activation
of certain enzymes via the ligand-activated AhR [61].

We assessed the interpretability of our pipeline by analyzing the NR-AR selected
proteins and enriched pathways to assess the toxic response. Based on our enrichment
analysis, the AhR signaling pathway is involved in 34 different toxic signaling pathways.
We analyzed a handful of pathways, including their corresponding proteins to illustrate
the validity of our toxicity analysis.

Figure 3. Overview of the NR-AhR signaling pathway. AhR is an inactive cytosolic transcription
factor bound to several co-chaperones. When a ligand passively diffuses through the cell membrane
and binds to AhR, the ligand-receptor complex translocates into the nucleus, and the chaperones
dissociate. Once in the nucleus, the AhR dimerizes with the AhR nuclear translocator (ARNT) forming
an active heterodimer. The activated heterodimer complex interacts with DNA directly or indirectly
by binding to recognition sequences located in the promoter regions of target genes, such as the
xenobiotic response elements (XRE). BRCA1 modulates the expression of genes involved in xenobiotic
stress responses [62], and was selected by our pipeline as an important protein feature in AhR toxicity.
The binding of the heterodimer complex to the DNA activates the transcription of genes leading to
proteins that affect inflammation, the cell cycle, and immunological response. The toxicity of the
ligand-activated AhR can also be mediated by non-genomic action through enzymatic activation and
the triggering of other pathways, such as the NF-κB pathway, which involves the TRAF6 protein,
another important protein selected by our pipeline. The interconnection of different pathways as
shown exemplifies how our pipeline can decipher different mechanisms for AhR toxicity induced by
the toxic compounds.

Several studies have shown that ligand-activated AhR is involved in toxicity and
cancer via DNA damage and cell cycle disruption. However, the molecular signaling mech-
anism by which this occurs is unknown [63]. It is hypothesized that TCDD exposure causes



Molecules 2022, 27, 3021 10 of 21

cancer by affecting the repair of double-strand breaks mediated by the AhR signaling path-
way [63]. Further, Rattenborg et al. showed that TCDD alters the expression of the tumor
suppressor gene breast cancer type 1 susceptibility protein (BRCA1) by downregulating
BRCA1 promoter activity. However, the exact mechanism by which TCDD suppresses
BRCA1 activity is unclear. [64]. BRCA1, which contains a E3 ubiquitin-protein ligase do-
main, plays a central role in DNA repair, cell cycle control, and tumor suppression [65–67].
The schematic representation of the BRCA1 pathway is depicted in Figure 4. A similar
study in the literature found that benzo[a]pyrene (BaP), a polycyclic AhR ligand [68], exerts
its carcinogenicity by inhibiting BRCA1. These studies indicate the participation of the AhR
pathway and its effects on DNA damage and cancer but do not mention the subsequent
downstream signaling pathway and protein regulation affected by the ligand-activated
AhR complex interaction. Furthermore, a study by Foo et al. highlighted that disruptions
to either the ataxia-telangiectasia mutated (ATM)-mediated phosphorylation and the cell
cycle G2-M checkpoint impact BRCA1-related cancers [69]. This supports our analysis
as our pipeline selected the ATM-mediated phosphorylation and the G2-M checkpoint
pathways as being involved in AhR toxicity, leading to the hypothesis that AhR ligands
(BaP and TCDD) interact with BRAC1, modulating these pathways.

Our pipeline selected BRCA1 as one of the important proteins in causing AhR toxicity,
corroborated by the research studies mentioned previously. This indicates that the toxic
AhR compounds in the Tox21 library cause carcinogenicity and DNA damage by binding
and modulating the activity of BRCA1. Further, we identified specific DNA damage
mechanisms (pathways and proteins) mediated by BRCA1, including the DNA double-
strand break response, processing of DNA double-strand break ends, nonhomologous
end-joining, ATM-mediated phosphorylation, and the G2-M checkpoint, along with other
proteins that play an essential role in DNA damage signaling and cell cycle control, such as
RNF8, UBE2N, RAP80 and NSD2, RPA1.

As previously mentioned, AhR is an important factor that regulates immune responses.
Several studies have implicated that the AhR signaling pathway interacts in autoimmune
and inflammatory diseases. BaP, an AhR ligand that is a prominent carcinogenic component
of cigarette smoke, smog, and some over-cooked foods [70], has been shown to exert its
toxicity by inhibiting osteoclastogenesis through the activation of the nuclear factor-κB (NF-
κB) pathway [71]. The NF-κB pathway is known to be involved in inflammatory arthritis
and osteoclastogenesis [72,73]. The TNF receptor-associated factor 6 (TRAF6), a protein
selected by our pipeline as involved in toxicity, is an essential factor for osteoclastogenesis.
It leads to the activation of the NF-κB pathway [74]. In addition to BaP, another AhR
ligand that contributes to inflammation is TCDD. TCDD has been shown to contribute to
rheumatoid arthritis, a chronic autoimmune disease that causes joint inflammation, bone
destruction, and increased pro-inflammatory cytokines, which is modulated by the NF-κB
pathway [75].

Further, a study in the literature demonstrated that TCDD activates the p38–MAPK
pathway, implying a link between p38-MAPK signaling and AhR. It demonstrated that the
AhR and p38–mitogen-activated protein kinase (MAPK) induce the expression and activity
of c-Jun, a proto-oncogene [76], highlighting a novel mode of interaction between the
AhR and p38–MAPK pathway in carcinogenicity. Our algorithm selected the p38–MAPK-
dependent pathway as important for AhR toxicity including JNK (c-Jun kinases) phospho-
rylation and activation mediated by activated human TAK1 and activated TAK1 mediates
p38 MAPK activation. Our pipeline selected interconnected pathways, including MAPK
and NF-κB signaling, depicted in Figure 5, highlighting that when compounds bind to the
proteins in these pathways and subsequently modulate their proper signaling, the outcome
is the observed toxic phenotypes.
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Figure 4. Breast cancer type 1 susceptibility protein (BRCA1) activity in response to DNA damage.
Double-stranded breaks in DNA activate the ataxia-telangiectasia mutated (ATM) kinase and Rad3-
related protein (ATR) that subsequently phosphorylate checkpoint kinase 2 (CHK2) and checkpoint
kinase 1 (CHK1). The ATR/ATM-mediated phosphorylation pathway phosphorylates the BRCA1
protein and activates proteins involved in DNA damage repair and apoptosis. The binding of toxic
compounds or AhR ligands leads to the suppression of the BRCA1 promoter activity, ultimately lead-
ing to increased cellular toxicity via DNA repair dysfunction and cell cycle checkpoint disregulation.
Our pipeline selected BRCA1 as important for predicting AhR toxicity, along with other proteins
such as RNF8, UBE2N, RAP80, NSD2, and RPA1, implying that compounds are known to induce
this phenotype possibly via the modulation of proteins directly involved in DNA repair and cell
cycle regulation.

The NF-κB signaling and MAPK pathway are illustrated in Figure 5. One way the
NF-κB and mitogen-activated protein kinase (MAPK) pathways are activated is through
the interleukin-1 receptor/toll-like receptor L-1R/TLR) and TLR7/8/9. Once IL-1R/TLR
or TLR7/8/9 is activated, it recruits the myeloid differentiation primary response 88
(MyD88). MyD88 recruits interleukin-1 receptor-associated kinases (IRKA1/4). The
IRKA1/4 complex then recruits TRAF6 protein. Once TRAF6 is activated, it is recruited by
UBE2N/UBC13, which are ubiquitin-conjugating enzymes that catalyze the synthesis of
a lysine-63-linked polyubiquitin chain [77]. TRAF6 activates the TAK1 molecule, which
activates several downstream molecules. It activates the I-κB kinase (IKK) complex, leading
to NF-κB pathway activation. TAK1 can also activate MAPKs (P38 and c-Jun kinases (JNK)),
which in turn activates the AP-1 transcription factor. AP-1 enters the nucleus and causes the
transcription of pro-inflammatory cytokines. In addition to activating TAK1, TRAF6 can
also activate downstream interferon regulatory factor 7 (IRF7) via the TLR7/8/9-MyD88
pathway, leading to the production of type 1 interferons.

Another way the NF-κB pathway is activated is through the TNFR1 receptor. Once the
TNFR1 receptor is activated, the TRADD protein binds to a domain on the TNFR1 receptor.
Then, the TNF receptor-associated factor 2 (TRAF2) and receptor-interacting protein 1 (RIP1)
kinase are recruited. The RIP1 protein ultimately activates the IKK complex. The IKK
complex consists of IKKα/IKKβ kinases and NF-κB essential modulator (NEMO). Then
IKK phosphorylates the Ikb protein, which masks the nuclear localization signal on NF-κB.
The phosphorylation of the Ikb protein causes its degradation by proteasomes, allowing
NF-κB to translocate into the nucleus. Once in the nucleus, NF-κB binds to genes such as
pro-inflammatory genes leading to cytokine production.
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TRAF6 was selected by our pipeline as an essential protein in predicting AhR toxicity
along with others such as UBE2N and TRAF2. A recent study highlighted that the interac-
tion between TRAF6 and UBE2N is crucial to the NF-κB inflammatory pathway [78]. This
signifies that one of the mechanisms by which AhR toxicity is induced is via modulating
proteins leading to autoimmune inflammation. Further, our pipeline identified pathways
connected with or upstream of the NF-κB pathway, including TRAF6-mediated NF-κB acti-
vation, TRAF6-mediated IRF7 activation, IRAK1 recruitment of the IKK complex, IRAK1
recruitment of the IKK complex upon TLR7/8 or 9 stimulation, TRAF6-mediated IRF7
activation in TLR7/8 or 9 signaling, RIP1-mediated IKK complex recruitment, and TAK1-
activated NF-κB by phosphorylation and activation of IKKs complex. These multiple
interconnected pathways are depicted in Figure 5.

Our AhR toxicity analysis shows that our algorithm selected proteins and their corre-
sponding pathways that are corroborated by literature analysis. In addition, these selected
proteins overlap across multiple pathways, showing that toxicity is not due to single target
binding but rather a complex interconnected network involving many pathways. The over-
lap in proteins and pathways indicates that our algorithm can potentially provide novel
insight into understanding toxicity from a proteomic and pathway perspective. However,
further prospective studies are warranted to elucidate the importance of these pathways in
AhR toxicity and the other toxicity endpoints.

Figure 5. Interconnectivity of the pathways leading to the activation of the NF-κB and MAPK signal-
ing pathways that induce cellular inflammation. The tumor necrosis factor receptor 1 (TNFR1) plays an
essential role in pro-inflammatory activities. Upon TNFR1’s stimulation TNF receptor-associated factor
2 (TRAF2) is recruited along with receptor-interacting serine/threonine-protein kinase 1 (RIP1), which
in turn activates transforming growth factor β-activated kinase 1 (TAK1). TAK1 can also be activated
through the interleukin-1 receptor/toll-like receptor (IL-1R/TLR). Once IL-1R/TLR is activated, it triggers
the activation of the TNF receptor-associated factor 6 (TRAF6) downstream. TRAF6 then combines with
ubiquitin-conjugating enzymes Ubc13/UBE2N and ultimately activates TAK1. TAK1 then activates the
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nuclear factor-κB (NF-κB) signaling pathway, which recruits the NF-κB transcription factor, leading to
the production of cytokines. TAK1 can also induce a cascade of mitogen-activated kinases (MAPKs),
including the c-Jun kinases (JNKs) or the p38 MAPK. This activates the activator protein 1 (AP-1)
transcription factor leading to the production of cytokines. In addition to activating TAK1, TRAF6
can also activate downstream interferon regulatory factor 7 (IRF7) via the TLR7/8/9-MyD88 pathway,
leading to the production of type 1 interferon. TRAF6, TRAF2, and UBE2N were identified by our
pipeline as important for predicting AhR toxicity, implying that these proteins may be modulated by
compounds known to induce this toxic phenotype via the depicted pro-inflammatory pathways.

3. Limitations and Future Work

While several studies in the literature have used chemical properties as feature de-
scriptors to predict toxicity [16–21], this work is, to our knowledge, the first to use protein
descriptors for feature selection. In this study, we looked at toxicity not only from a single
protein and target-binding perspective but also in the context of pathways and signaling
events. This study is useful to investigate the toxicity targets and pathways interconnected
with well-known toxicity pathways.

Examining the broad spectrum of possible pathways enriched for a specific toxicity
endpoint enables the investigation of multiple proteins and target binding sites leading
to the corresponding toxicity. Our literature-based validation demonstrated that our
computational pipeline predicts pathways and proteins associated with AhR toxicity. Even
though some experimental studies from the literature support our predictions, further
prospective experimental studies are warranted to unequivocally confirm their association
with AhR toxicity. These areas are worth improving on in the future by implementing novel
machine learning feature selection techniques. In summary, our pipeline implemented
within the CANDO platform is useful for hypothesis generation and elucidating toxicity
mechanisms at proteomic and pathway scales.

4. Materials and Methods
4.1. Tox21 Datasets

The Tox21 compound structures and activity measurements for twelve different qHTS
assays were extracted from the Tox21 Data Challenge [11]. The training, evaluation, and test
datasets consisted of 11,764, 296, and 647 compounds, respectively. We combined the
training and evaluation datasets to form our final training data and used the test data for
model evaluation. The twelve qHTS in vitro assays consisted of two categories, seven
of which were part of the nuclear receptor (NR) and five part of the stress response (SR)
pathways. The NR assays included the androgen receptor (AR), androgen receptor ligand-
binding domain (AR-LBD), aryl hydrocarbon receptor (AhR), aromatase, estrogen receptor
(ER), estrogen receptor luciferase assay (ER-LBD), and peroxisome proliferator-activated
receptor γ (PPAR-γ). The SR assays included the antioxidant response element (ARE),
heat shock factor response element (HSE), p53, mitochondrial membrane potential (MMP),
and ATPase Family AAA domain containing 5 (ATAD5). In each assay, the activity of a
compound was assigned a class label, where a label of 1 signified that the compound was
active, i.e., toxic, and a label of 0 signified that the compound was inactive, i.e., not toxic.
There were duplicates and inconsistent activity labels for the compounds across the twelve
assays (see Section 4).

4.2. UniProt

A human protein library of 19,582 sequences was extracted from UniProt [79]. Of these,
4966 had at least one solved X-ray diffraction structure in the Protein Data Bank (PDB) [80],
including 4641 with one chain, 298 with two chains, and 27 with three chains, totaling 5316
total human structures after removing two non-viable ones. These protein structures were
chosen by matching their UniProt IDs to all corresponding structures in the PDB, filtering
for chains with the most significant sequence coverage to the whole sequence, and then
selecting the chain with the best resolution. Proteins were mapped to 2219 pathways in
Reactome [81] with an average of 35.1 structures per pathway.
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4.3. Protein-Compound Interaction Scoring Protocol

The Computational Analysis of Novel Drug Opportunities (CANDO) therapeutic
discovery, repurposing, and design platform [36–49] was used to generate protein in-
teraction signatures for every molecule in its drug/compound library, which served as
the feature extraction section in our pipeline. These protein interaction signatures were
used as features in our machine learning development. The interaction scores between
every compound in the Tox21 dataset and all structures in the human protein library were
computed using a rapid in-house bioanalytical docking (BANDOCK) protocol [43]. First,
binding sites were predicted for each protein using COACH [82], a consensus method
combining structural and sequence similarity to proteins in the PDB [80], with each pre-
diction having a confidence score (BScore) as well as an associated co-crystallized ligand.
Depending on the scoring protocol used, the output interaction score for the compound
and protein considers both the BScore and the molecular fingerprint similarity between the
compound and the associated ligand (CScore). In this study, the scores were determined
by multiplying the BScore by the CScore, which itself is the Sorenson–Dice coefficient [83]
that measures the similarity between the ECFP4 fingerprints (computed using RDKit [84])
of the query compound and binding site ligand. Since the COACH algorithm outputs
multiple binding sites (and therefore associated ligands) for each protein, the maximum
value of the product of BScore and CScore is the chosen interaction score; this serves as a
measure of the likelihood of interaction between a compound and a protein, i.e., a proxy
for binding strength.

4.4. Study Design

A general overview of the workflow of this study is illustrated in Figure 1. Our study
design consisted of data pre-processing, feature generation, resampling, feature selection,
and enrichment analysis. Data pre-processing and feature generation was implemented on
both the training and test datasets. Resampling using SMOTE+ENN and feature selection
using the random forest algorithm was applied separately to each of the twelve assays in
the training dataset. This was followed by model optimization using a repeated stratified
three-fold cross-validation using the training data and model evaluation using the test
data. Enrichment analysis was conducted on the ranked list of top 100 protein descriptors
selected by the algorithm to analyze the Tox21 toxicity assays at a proteomic and pathway
level. These steps are described in detail in the subsequent sections.

4.4.1. Data Pre-Processing and Feature Generation

Compound structures were extracted from the Tox21 Data challenge as SMILES strings.
Compound structure standardization and normalization were implemented using the
RDKit MolVS library [50]. We applied a fragmentation step as described in [31], where
SMILES with salt moieties, varied resonance structures, and tautomers were removed,
and the valid SMILES were canonicalized by normalizing inconsistent chemical groups.
To handle the ambiguous compounds with duplicate activities (0 or 1) for the same toxicity
assay, we removed compounds with an equal number of active and inactive labels for that
particular target. For compounds with an unequal number of active and inactive labels,
the most frequent activity label was selected.

Following the normalization and merging of the compounds, the resulting SMILES
were used to generate a compound-protein interaction score matrix using the BANDOCK
interaction scoring protocol [43]. This provided the feature descriptor input to the model.
The matrix consisted of 7808 compounds for the training set and 628 compounds for the
test set. The generated matrix consisted of 8385 proteins as feature descriptors. The feature
space was filtered for interactions with only solved protein structures, leading to 5316
proteins. The elimination of features reduced the computational requirement and the
effect of the curse of dimensionality [85]. The resulting CANDO matrix and the activity
measurements of the compounds for each of the twelve different qHTS assays were merged,
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generating twelve training datasets, one per assay. For each assay, only compounds labeled
active or inactive were retained.

To understand the activity measurement distribution for each of the twelve assays,
the number of active and inactive compounds for each of the twelve assays was computed,
along with the imbalanced ratio, which is the ratio of the majority class (inactive non-toxic
compounds) to the minority class (active toxic compounds).

4.4.2. Data Resampling for Predictive Modeling

As mentioned before, the sparsity in the Tox21 data results in a model that favors the
predominant inactive class and misclassifies the minority active class, which is usually the
class of interest. We balanced the class distribution for each training set by implement-
ing the SMOTE+ENN method to address this challenge. SMOTE+ENN combines both
oversampling (using SMOTE) and undersampling (using ENN). SMOTE [86] synthesizes
samples in the minority class by linear interpolation to increase the number of instances
in the minority class. ENN reduces the number of instances in the majority class by re-
moving noisy samples from the majority class, which is inconsistent with its k-nearest
neighbors [87]. The SMOTE+ENN algorithm has been shown to deliver promising results
when applied to imbalanced datasets with a small number of positive instances, including
the Tox21 data [31,88].

4.4.3. Random Forest

Protocols based on random forest have gained popularity in computational biol-
ogy research owing to their unique advantages as being non-parametric, interpretable,
and highly accurate for cheminformatic modeling [89,90]. Previous studies using Tox21
have demonstrated the utility of random forest in predicting compound toxicity [19–21].

Random forest is an ensemble learning method combining decision trees as base
learners for increased performance [27]. Each tree is trained by different bootstrap samples
having the same size as the training set. By selecting a random subset of features at each
node in the tree construction, random forest introduces randomization and increased
diversity in the forest, reducing the variance of the base learners [91]. The construction of
random forest is described by the following steps:

(1) Draw a bootstrap sample: we randomly sample N compounds with replacement from
the original dataset;

(2) Create maximum decision trees: we construct a decision tree for each bootstrap sample
by randomly sampling a subset of features at each node and choosing the best split
among those features;

(3) Construct a forest by repeating steps 1 and 2 for N trees;
(4) Predict the outcome: from the built forest, the prediction is obtained by aggregating

the predictions of the N trees (i.e., majority votes for classification and average for
regression tasks).

Given that the Tox21 dataset is high dimensional with a large feature space, traditional
methods can lead to model overfitting. However, the random forest algorithm is less
susceptible to model overfitting due to the utilization of ensemble strategies and random
sampling, and therefore, we selected it as our modeling algorithm for this study [30].

4.4.4. Random Forest for Feature Selection

The high-dimensional feature space of many tasks in bioinformatics has created a need
for sophisticated feature selection techniques [92]. Feature importance is the process of
finding parts of the input feature space relevant to a prediction task. The main advantage
of using random forest compared to other machine learning algorithms is that it directly
performs feature selection during model construction.

A commonly used measure to evaluate the importance of each predictor variable from
a random forest classifier is the Gini importance measure, also known as the mean decrease
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of impurity. As a simple feature importance to rank features, random forest Gini feature
importance has gained popularity in bioinformatics applications [92].

Gini importance is derived from the Gini index [27], which is a criterion used to
determine which feature to split during tree training. It measures the level of impurity of
the samples assigned to a node based on a split. Gini index ranges between 0 and 1, where
0 means all instances belong to one class, and 1 means that the instances are distributed
randomly across the classes. The smaller the Gini index, the purer the node. The Gini index
is measured as follows:

Gini(P) =
n

∑
i=1

pi(1 − pi) = 1 −
n

∑
i=1

p2
i , (1)

where P = (p1, p2, . . . , pn), pi is the probability of the class i at a certain node, and n is the
number of classes [90].

The Gini importance value of a feature is computed as the sum of the Gini indices
weighted by the probability of reaching that node averaged among all trees in the forest.
A high Gini importance means that the feature is likely to be informative [93].

4.4.5. Model Training and Testing

Following data pre-processing, SMOTE+ENN was applied to the training data to
oversample the minority class and obtain an augmented training set to train the random
forest. The random forest was trained with stratified ten-fold cross-validation with three
repetitions to optimize the model’s hyper-parameters. The hyper-parameters that were
optimized included the maximum depth of the tree and the number of trees in the forest.
Other model hyper-parameters were set to their respective default values in scikit-learn [94].
Once the random forest model was optimized using the training data, the unseen test data
was used to asses the model generalization performance and evaluate the effectiveness of
the model. Afterward, the Gini importance was calculated to extract the top 100 weighted
feature descriptors.

The model training was applied to each of the twelve datasets, generating an optimized
feature selection model with the optimal feature descriptors per assay. The re-sampling
technique was applied using the imbalanced-learn package in Python [95], and the random
forest model was implemented via the scikit-learn Python library [94].

4.4.6. Performance Evaluation Metrics

Once the model was optimized using the training data, the unseen test data was used
to evaluate its performance. We reported both the area under the precision-recall curve
(AUPRC) and the area under the receiver-operating characteristic curve (AUCROC) given
the class imbalance for the task [96]. We also reported the accuracy metric (the proportion
of correct predictions relative to the total number of compounds), with the caveat that high
accuracy does not translate into a model that correctly predicts the rare inactive class and
can therefore be misleading for evaluating model performance [97].

The decision made by the random forest classifier can be represented in a 2-by-2
confusion matrix, given that we have a binary classifier. The confusion matrix has four
categories: true positives (TP), the number of active compounds that are correctly labeled;
false positives, which is the number of incorrectly labeled inactive chemicals; true negatives,
which refers to the number of correctly labeled inactive compounds; and lastly, false
negatives (FN), which correspond to the number of incorrectly labeled inactive compounds.

We utilized imbalanced classification metrics derived from the confusion matrix, in-
cluding recall, precision, F1-score, balanced accuracy, specificity, and Matthews’s correlation
coefficient (MCC). Recall is a measure of the accuracy of the active minority class. It gives
the proportion of actual positives identified correctly by the model, i.e., the number of
correctly labeled active compounds out of the actual active compounds. Precision (also
called positive predictive value) gives the proportion of positive identifications that were ac-
tually correct, i.e., the number of correctly labeled active compounds out of the compounds
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predicted as active. The F1-score is the harmonic mean of precision and recall. Specificity
is a measure of the accuracy of the inactive majority class. It calculates the proportion of
the actual negatives identified correctly by the model, i.e., the number of correctly labeled
inactive compounds out of the actual inactive compounds. Balanced accuracy is the average
of sensitivity and specificity and is useful when evaluating a classifier, especially when
the classes are imbalanced. MCC is another metric used to assess the quality of binary
classification for imbalanced data. It measures the correlation of the true classes with
the predicted labels. MCC takes into account all of the four confusion matrix categories.
These evaluation metrics were implemented using the scikit-learn package in Python [94].
The formulae of the evaluation metrics are as follows:

Recall= Sensitivity =
TP

TP+FN
(2)

Precision =
TP

TP+FP
(3)

F1-score = 2 × Precision × Recall
Precision + Recall

(4)

Specificity =
TN

TN+FP
(5)

Balanced accuracy =
Sensitivity + Specificity

2
(6)

MCC =
(TP × TN)− (FP × FN)√

(TP+FP)× (TP+FN)× (TN+FP)× (TN+FN)
(7)

4.4.7. Enrichment Analysis

The top 100 most essential proteins for predicting each toxicity endpoint for the com-
pounds in Tox21 dataset were inputs to an enrichment analysis protocol. The enrichment
analysis identifies significantly overrepresented pathways based on their mappings to
proteins obtained via Reactome. It utilizes the hypergeometric distribution to determine
the probability that a pathway is significantly overrepresented based on the number of
proteins in the top feature set associated with the pathway relative to the whole human
proteome and the total number of proteins associated with it in that pathway. A p-value is
computed using the probability mass function with the number of top features associated
with the pathway serving as input. The human proteome used in this study includes 19,582
proteins from UniProt, of which 4966 have at least one solved X-ray diffraction structure
available in the PDB and are mapped to at least one biological pathway.

5. Conclusions

To the best of our knowledge, this is the first computational pipeline that utilizes
protein descriptors to extract the important features from the twelve toxicity endpoints in
the Tox21 dataset to evaluate compound toxicity. We employed a combination of protocols
within the CANDO drug discovery platform, including compound-proteome interaction
signature generation, data balancing, feature selection, and enrichment analysis to under-
stand compound toxicity behavior at the protein pathway level. We expect this computa-
tional pipeline will provide a novel perspective in evaluating environmental compounds
and allow researchers and the pharmaceutical industry to explore the underlying proteomic
mechanisms that not only induce toxicity but also potentially assist in developing novel
therapeutics to mediate toxicity targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27093021/s1. Table S1: Protein identifiers and names
associated with the NR-AhR toxicity pathway enrichment analysis.

https://www.mdpi.com/article/10.3390/molecules27093021/s1
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