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Abstract: Bronchoalveolar lavage of the epithelial lining fluid (BALF) can sample the profound
changes in the airway lumen milieu prevalent in chronic obstructive pulmonary disease (COPD). We
compared the BALF proteome of ex-smokers with moderate COPD who are not in exacerbation status
to non-smoking healthy control subjects and applied proteome-scale translational bioinformatics
approaches to identify potential therapeutic protein targets and drugs that modulate these proteins
for the treatment of COPD. Proteomic profiles of BALF were obtained from (1) never-smoker control
subjects with normal lung function (n = 10) or (2) individuals with stable moderate (GOLD stage 2,
FEV1 50–80% predicted, FEV1/FVC < 0.70) COPD who were ex-smokers for at least 1 year (n = 10).
After identifying potential crucial hub proteins, drug–proteome interaction signatures were ranked by
the computational analysis of novel drug opportunities (CANDO) platform for multiscale therapeutic
discovery to identify potentially repurposable drugs. Subsequently, a literature-based knowledge
graph was utilized to rank combinations of drugs that most likely ameliorate inflammatory processes.
Proteomic network analysis demonstrated that 233 of the >1800 proteins identified in the BALF
were significantly differentially expressed in COPD versus control. Functional annotation of the
differentially expressed proteins was used to detail canonical pathways containing the differential
expressed proteins. Topological network analysis demonstrated that four putative proteins act as
central node proteins in COPD. The drugs with the most similar interaction signatures to approved
COPD drugs were extracted with the CANDO platform. The drugs identified using CANDO
were subsequently analyzed using a knowledge-based technique to determine an optimal two-drug
combination that had the most appropriate effect on the central node proteins. Network analysis of the
BALF proteome identified critical targets that have critical roles in modulating COPD pathogenesis,
for which we identified several drugs that could be repurposed to treat COPD using a multiscale
shotgun drug discovery approach.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and
morbidity in the US [1–7]. Additionally, COPD results in millions of hospitalizations in
the developing world [1,3,8–10]. The prevalence of cigarette smoking continues to rise in
most developing countries worldwide [11–13]. However, only 25–50% of tobacco smokers
develop COPD, suggesting only a subset develops an exaggerated inflammatory process
that leads to lung destruction [11,12,14]. Bronchoalveolar lavage fluid (BALF) and bronchial
samples from ex-smokers reveal active inflammation long after smoking cessation [15,16].

Although structural changes in the airways, parenchyma, and pulmonary vessels are
typical in patients with COPD, the lower airways and the alveoli are the initial sites of the
inflammatory process [17,18]. The inflammatory process initiated by smoking persists after
cessation and is likely exaggerated by autoimmunity and infection [19,20]. Accurate and
precise measurement of the molecular mediators in the airways should aid in rigorous
analysis of their role in disease.

There has been a keen interest in understanding the genetic determinants of COPD, as
the interaction between genes and the environment leads to protein expression, ultimately
resulting in either healthy or disease states. However, genomic data alone does not predict
protein abundance or activity; proteins are the ultimate participants in integrated biological
processes that lead to healthy physiological function or pathology. Proteome-based analysis
of bronchoalveolar lavage fluid (BALF) in COPD can identify tissue-specific markers of
inflammation that can lead to understanding the mechanisms of COPD progression.

We sought to determine an unbiased proteome-based analysis of BALF in COPD
under stable conditions (not in exacerbation status) to identify a broad series of molecules
involved in COPD pathogenesis. A label-free proteomics mass spectroscopy method was
utilized. The differentially expressed proteins were analyzed using multiple bioinformatics
tools to identify critical pathways that were altered in these ex-smoker patients with COPD
compared to never-smoker healthy controls and important “hub” proteins implicated in
COPD etiology, and identify putative drug candidates that can be repurposed to treat
COPD.

The raw proteomic data used in this manuscript were initially detailed in a previously
published methodology manuscript using strict criteria (two peptide identification criteria
for a protein, ≥1.5 folds change, and p-value < 0.05) to identify 423 individual proteins
with 76 proteins expressed differently between COPD and controls [21]. In this analysis, we
adopted a pragmatic approach to the same raw proteomic data (one peptide identification
criterion, ≥1.5 folds change, and p-value < 0.05) that identified 1831 individual proteins
and 233 differentially expressed proteins between the two groups. The latter, more practical
approach provides important information for biomarker and therapeutic target discovery
that may be utilized in future research to discover valuable interventions.

2. Results
2.1. Study Population Characteristics

Characteristics for subjects included in the BALF study are shown in Table 1, with the
only significant differences between the two groups being in tobacco smoke exposure and
lung function.
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Table 1. Clinical parameters of never-smoking healthy subjects and ex-smokers with stable COPD in
BALF study.

Control Subjects
n = 10

COPD Subjects
(GOLD Stage 2)

n = 10
p-Value

Age (years) 63.4 ± 11.7 67.8 ± 8.5 0.15

Sex 0.31

Male 6 7

Female 4 3

Race 0.083

Caucasian 8 10

African-American 2 0

BMI (kg/m2) 28.5 ± 4.2 32 ± 9.7 0.32

Years patient quit smoking NA 12.9 ± 4.4

Tobacco smoking, Pack years NA 56.6 ± 17.2 <0.001

FEV1 (% predicted) 96.3 ± 14.8 65.9 ± 8.1 <0.001 *

FVC (% predicted) 95.6 ± 13.4 87.6 ± 13.1 0.19

FEV1/FVC 77.6 ± 3.8 57.8 ± 8.6 <0.001 *
FEV1: forced expiratory volume in 1 s. FVC: forced vital capacity. Years quit: Years subjects quit tobacco smoking.
Pack-Years: the average number of packs of cigarettes smoked per week multiplied by the years the subject
smoked cigarettes. *: The significant differences in lung function noted between the control subjects and COPD
subjects are expected based on a priori selection of the cohort based on different lung function capacities.

2.2. BALF Proteome Characteristics

A total of 1831 unique proteins were identified in the BALF proteome. A total of 233 pro-
teins (>1.5-fold absolute change, p-value < 0.05) had a significant differential expression in BALF
samples from patients with COPD versus healthy ex-smokers; 138 proteins were decreased in
COPD while 95 proteins were increased (Tables S2 and S3).

2.3. Manually Curated Pathway Analysis
2.3.1. Functional Annotation of Differential Expressed Proteins and Transcription
Factor Interactions

The 233 differentially quantified proteins were characterized by their biological pro-
cesses, transcription factor interactions, and cellular localization, by employing NIH’s
DAVID [22,23]. The proteins involved in several biological processes implicated in COPD
pathogenesis (total number of proteins, number upregulated, and number downregulated)
such as proteolysis [24] (20,4,16), extracellular matrix [25] (13,6,7), cell adhesion [26,27]
(11,2,9), cytoskeleton [28] (32,14,18), defense response [29,30] (16, 7,9), cell migration [31]
(12,4,8), and oxidation-reduction [32] (11,2,9) were altered in COPD. When examining the
lung lining fluid, the largest single group of differentially expressed proteins was associated
with the extracellular space (49,30,19) (see Table S4).

Transcription factors (Table S5) associated with the differentially expressed proteins
(total number of proteins associated with the transcription factor) included serum response
factor-SRF (148), transcription factor 8-AREB6 (166), signal transducer and activator of
transcription factor 1-STAT1 (69), zinc finger protein-GFI1 (97), signal transducer and
activator of transcription factor 3-STAT3 (101), nuclear factor kappa-light-chain-enhancer
of activated B cells-NF-κB (79), CCAAT/enhancer-binding protein β-CEBPB (109), paired
box gene 2-PAX2 (113), and activating transcription factor 2-CREBP1 (95).
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2.3.2. Bioinformatic Pathway Analysis of BALF Proteomic Data

The protein expression datasets were imported into IPA (Ingenuity Systems) and
projected onto the relevant biological pathways; processes linked to the differentially
expressed proteins were analyzed with the IPA’s manually curated knowledge database.
Of the 233 differentially expressed proteins, 217 matched the IPA-curated database and
were analyzed. Sixteen pathways were noted to have several proteins associated with the
differentially expressed BALF dataset (Table S6), including proteins implicated in cellular
movement, cellular death and survival, cell morphology, immune cell trafficking, and cell
cycle. Figures S1–S4 depict IPA networks of selected pathways with the highest number of
differentially expressed proteins.

2.4. Computational Drug Prediction

One-hundred-and-thirty out of 233 BALF differentially expressed proteins were identified
in the CANDO human protein library. This subset of proteins within the CANDO platform
was used to predict 189 putative drug candidates with the most similar protein interaction
signatures to the set of known drugs used to treat COPD (Figure 1 and Table S7). Many
of the drugs were corticosteroids; however, other putative drugs included tezacaftor [33], a
recently developed drug to potentiate sodium channel activity to treat cystic fibrosis; two
additional drugs predicted to treat COPD, gemfibrozil [34,35], and pioglitazone [35,36], are
drugs currently used to treat hyperlipidemia and diabetes, respectively.

2.5. Candidate Key Mediators of COPD Pathology Based on Literature Derived Drug Enrichment
2.5.1. Literature Informed Protein-Protein and Protein-Drug Interaction Network

A total of 233 proteins were identified as differentially expressed between COPD
patients and healthy controls by mass spectrometry. Of these, 214 were represented in the
Elsevier knowledge graph [37], with the remainder comprising specific immunoglobulin
chain proteins. A query of the knowledge graph for documented regulatory interactions
between these protein entities yielded 206 regulatory edges supported by 807 references
(with a median of one reference per edge). One-hundred-and-twelve of the 214 identified
proteins could not be connected to the broader network circuit by a documented interaction.
The protein entities in this network were then assessed in terms of their importance as
mediators of signal transfer based on their betweenness centrality (Figure 2).

2.5.2. Network Topological Analysis

Four nodes representing proteins in the network stood out based on the normalized
betweenness centrality values representing a greater than linear baseline increase from the
next lower-ranking node: fibronectin, vimentin, intercellular adhesion molecule 1 (ICAM1),
and galectin-3. These potentially key signaling mediators had a betweenness centrality of
at least 25% of the maximum.

Analysis of the initial data reveals fibronectin and ICAM1 are reduced in COPD
patients relative to healthy controls; thus, any candidate therapeutic should target an
increase in their activity. The reverse is true for vimentin and galectin-3. We, therefore,
sought drugs or combinations of drugs predicted to accomplish the appropriate activation
or inhibition of the four most central nodes. Specifically, drugs that will promote central
node proteins that were downregulated in the COPD cohort and inhibition of central node
proteins that were overabundant in COPD. Therefore, the idealized drug vector constitutes
interactions leading to desirable modulation of the central hub protein. CANDO identified
189 distinct drugs (Figure 1, Tables S6 and S7) with relevance for COPD; 39 of these
represented in the Elsevier knowledge graph [37] were analyzed for their enrichment of the
desired agonist and antagonist effects on the most central entities in the protein regulatory
network. Highly enriched drugs or drug pairs are more likely than randomly selected
drugs to exert appropriate inhibition or promotion of the most central proteins. Two
single drugs (fluocinolone acetonide and dexrazoxane) and 57 two-drug combinations were
significantly enriched. Fluocinolone acetonide and dexrazoxane appeared in 54% and 46%
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of all significantly enriched two-drug combinations, respectively, far greater than the other
drugs appearing in these combinations (Figure 3). Fluocinolone acetonide and dexrazoxane
are the most enriched two-drug combination leading to an idealized drug vector.
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Figure 1. Putative drug candidates for treating COPD generated using the CANDO platform. A
subset of 130 proteins from the CANDO human protein library was identified from 233 differentially
expressed proteins in the BALF. These 130 proteins were utilized to generate BALF-specific interaction
signatures for 2450 FDA-approved drugs via our in-house docking protocol BANDOCK (see methods).
These drug–proteome interaction signatures were compared to 34 known drugs used to treat COPD
to predict 189 of the most similar putative drug candidates. The 189 drugs are represented by colored
circles, with the diameter of the circles decreasing with descending overall rank. Drug name labels
are depicted for the selection of the 189 drugs shown by the colored circles. The horizontal axis plots
the consensus score count or the number of times the particular drug is listed within the top 30 most
similar drugs to those known to treat COPD based on interaction signature similarity. The vertical
axis plots the average of the cumulative ranks of the consensus scores for the putative drug. The
overall rank of a putative drug is determined by initially sorting the drug by the consensus score, as
noted above, and then additional sorting by the average rank. Many of the drug candidates were
corticosteroids not used to treat COPD; however, other putative drugs included tezacaftor, a drug to
potentiate sodium channel activity in the treatment of cystic fibrosis; two additional drugs predicted
to treat COPD, gemfibrozil, and pioglitazone, are drugs currently used to treat hyperlipidemia
and diabetes, respectively. This analysis indicates that the CANDO platform applied to the BALF
proteome can generate putative drug candidates for COPD treatment.
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Figure 2. BALF network centrality nodes ranked by betweenness centrality. Betweenness centrality
quantitatively describes how a node (in this case, a differentially expressed protein in the BALF
proteome) mediates the interaction between communities of neighboring nodes in the network.
Shown are 44 network entities with betweenness centrality > 0.01, normalized to the maximum
betweenness centrality present in the network. The betweenness centrality scores for all nodes were
expressed as fractions of the maximum betweenness centrality present in the network. The (red and
blue) colors indicate the needed effect (inhibition/induction) to restore these entities from COPD
levels to the normal levels in healthy control subjects. The four nodes with ≥25% of the maximum
betweenness centrality (fibronectin) with normalized betweenness centrality values representing a
greater than the linear baseline increase from the next lower ranking node are fibronectin, vimentin,
intercellular adhesion molecule1 (ICAM1), and galectin-3 (LGALS3). These potential key signaling
mediators had a betweenness centrality of at least 25% of the maximum. Topological analysis of the
interaction network regulatory interactions documented in the literature suggests that these proteins
were central mediators of COPD [38–43]. Colors indicate the needed effect to restore these entities to
the normal levels in healthy control subjects.
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Figure 3. Drug frequency amongst idealized drug combinations predicted to modulate central pro-
teins in COPD. The drugs initially identified by CANDO, which were predicted to activate or inhibit
the four central nodes with the highest maximum betweenness centrality, are listed earlier (Figure 2).
Specifically the drugs are predicted to promote central node proteins which were downregulated in
the COPD cohort and inhibit central node proteins (identified by network topological graph), which
were overabundant in the COPD cohort. The idealized drug vector constitutes interactions leading to
desirable modulation of the central hub protein. Representation of individual drug frequency among
the 57 significantly enriched two-drug combinations (idealized drug vectors) out of the 39 proteins
represented in the Elsevier knowledge graph are listed in descending order. Fluocinolone acetonide
and dexrazoxane appeared in 54% and 46% of all significantly enriched two-drug combinations,
respectively, which is far greater than other drugs appearing in these combinations. The combination
of fluocinolone acetonide and dexrazoxane is the most enriched two-drug combination leading to an
idealized drug vector that most likely reverses the protein levels of the four central nodes to levels
found in healthy control subjects.
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We additionally conducted a targeted query to assess the predicted effects of drugs
commonly applied in pulmonary disease treatment on the most central proteins of this reg-
ulatory network (Figure 4 and Table S8). While some of these drugs have been documented
to have the desired effect on two of the central proteins, fibronectin or vimentin, all have
been documented to have the opposite effect on at least one of the most central proteins.
Therefore, they were not significantly enriched out of the set of all possible candidate drugs.
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Figure 4. Commonly used pulmonary drugs and their putative effects on four central node proteins in
COPD. A Sankey diagram categorizing putative drugs’ likely effects on four central node proteins in
COPD is depicted. There are eight drugs on the left of the diagram used to treat different pulmonary
diseases, with the corresponding drug classes displayed on the right side of the diagram. The effects
of these drugs on four nodes (fibronectin, vimentin, intercellular adhesion molecule1 (ICAM1), and
cd44) are detailed in the middle of the diagram, with broad lines connecting the proteins in the right
to the putative effect (desired, unknown, and undesired). While some of these have been documented
to have the desired effect on fibronectin (promotion) or vimentin (inhibition), all have been reported
to have the opposite effect on at least one of the most central proteins. This suggests that using drugs
commonly used to treat pulmonary disease, if repurposed for COPD, may have contrary effects on
the mediators of the pathways involved in COPD, reinforcing the need to have a more nuanced
approach to drug repurposing.

3. Discussion

Our investigation of the COPD BALF proteome utilizing novel bioinformatic tech-
niques revealed significant differences in proteins involved in multiple biological processes,
including lung-specific mechanisms, protease/anti-protease homeostasis, immunoregula-
tion, and the extracellular matrix. Proteomic profiling of the complex pathways implicated
in COPD provides broader physiological exploration not provided by studying one entity at
a time. We identified several differentially expressed proteins in COPD versus controls that,
based on a review of published literature, have not been previously implicated in COPD
etiology. This preliminary analysis illustrates how our BALF proteomic analysis represents
a powerful approach to elucidate COPD pathogenesis and identify novel biomarkers.

Employing the bioinformatics tool DAVID and IPA, putative pathway networks were
constructed based on the differentially expressed proteins in the BALF proteome that
implicated multiple transcription factor pathways and disparate biological processes, such
as extracellular space, proteolysis, extracellular matrix, cell adhesion, cytoskeleton, defense
response, cell migration, and oxidation reduction.

The CANDO platform identified 189 drug candidates with similar protein interaction
signatures based on the BALF proteome compared to known drugs used to treat COPD.
However, while most putative drug and protein interactions are likely inhibitors, the
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induction or inhibition of a target protein is indeterminable with solely the binding potential
between drug and protein pairs.

Topological analysis of the interaction network connecting 233 proteins differentially
expressed in COPD through regulatory interactions documented in the literature suggested
that ICAM1 [38] and galectin-3 [39] are important central mediators of inflammation. At the
same time, both fibronectin [40,41] and vimentin [42] are central mediators of inflammation
and fibrogenesis. CD44 [43] is one of the most abundant receptors in mesenchymal stem
cells and has been implicated in cell migration in response to lung injury. This body of
evidence corroborates the pathway-enrichment analysis results described above and points
to fibrosis and innate inflammation as important processes governing the pathogenesis and
progression of COPD. A literature knowledge-based query (Elsevier knowledge graph) of
drugs with desired drug–target interactions (generated using CANDO) identified putative
drugs, such as anti-neoplastic, anti-fibrotic drugs, and inflammation regulators that would
restore key central proteins to the levels characteristic of healthy controls. Our results
also suggest that currently utilized medications for COPD have disparate effects on the
identified central node proteins that are key putative mediators of COPD pathogenesis
and progression.

In contrast, the corticosteroid fluocinolone acetonide [44,45] and the cardioprotective
agent dexrazoxane [46,47] were highly enriched for the desired effects on central net-
work entities, both individually and in combination. Fluocinolone acetonide is a stronger
potentiator than other corticosteroids of the TGF-β pathway [48], which is noted to be
dysregulated in COPD [49], and fluocinolone acetonide may be more effective than compa-
rable corticosteroids in improved homeostasis in that pathway. Dexrazoxane [46,47] is used
to reduce cardiac toxicity associated with anthracycline-based chemotherapy agents by
binding to iron and reducing reactive oxygen species; with oxidative stress as a significant
factor in COPD pathogenesis [50], antioxidative therapy may be beneficial.

The documented actions of these immunomodulators were predicted here to sub-
stantially counteract the observed dysregulation of centrally connected proteins in COPD
patients. The relatively high representation of immunomodulators among the candi-
date agents and the increased centrality of fibrosis-related proteins is consistent with the
paradigm of airway remodeling as central to COPD pathology [51]. With additional data,
this regulatory circuit could be used as a testbed for computational evaluation of these and
other candidate drug effects using network topological methods [52].

3.1. Limitations and Strengths

Our approach does have some limitations. The variability in how much BALF is
recovered from each aliquot of saline infused in to the lower airway in COPD vs. control
subjects is inherent in most BALF proteomic analyses. However, the BALF proteins were
normalized to albumin BALF concentrations to account for the variability. The examination
of protein levels without accounting for post-translational modifications, such as phospho-
rylation, may neglect important differences in protein interactions and activity, despite
no significant differences in protein levels. Also, the BALF samples were from subjects in
the COPD group who were ex-smokers. This exclusion limits the generalizability of our
findings, particularly in current smokers, since the acute effects of tobacco smoke were
excluded in our study design.

However, we confined our analysis to ex-smokers with moderate COPD to obtain
some uniformity of the COPD phenotype and to avoid the acute inflammatory effects
of current smoking. Future work on proteomic profiles will inform us of the difference
between such profiles in current smokers and different stages of COPD.

3.2. Comparison to Previously Published Studies

A sputum proteomics study endeavored to identify COPD severity biomarkers by
employing 2D gel electrophoresis and revealed 15 proteins that were significantly dif-
ferentially expressed between healthy smoker controls and subjects with GOLD stage II;
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subsequently, 9 of the 15 candidate proteins were validated with Western Blot. Of the
nine candidate proteins validated with Western Blot, seven were statistically significantly
different between groups, specifically albumin, alpha-2-HS glycoprotein, transthyretin,
PSP94, apolipoprotein A1, lipocalin-1, and PLUNC [53]. Employing quantitative ELISA
data normalized for protein content, the investigators identified apolipoprotein A1 and
lipocalin-1 as statistically differentially expressed in COPD. Although apolipoprotein A1
and lipocalin-1 were identified in our study of the BALF proteome, the proteins were
not significantly differentially expressed, likely due to the differences in expression in the
different biocompartments of sputum vs. bronchoalveolar lumen.

A 2D differential gel electrophoresis study and subsequent mass spectroscopy were per-
formed by Ohlmeier et al., which compared healthy smokers, non-smokers, and smokers with
GOLD stage II COPD and revealed a different set of 15 proteins that were differentially ex-
pressed between the groups [54]. Of these proteins, polymeric immunoglobulin receptor levels
in lung tissue and blood between the three groups were correlated with airflow obstruction.

In Lee et al., tumor-free lung tissue harvested from patients with lung cancer resec-
tion, when examined via 2D gel electrophoresis/MALDI-TOF-MS, revealed 8 proteins that
were upregulated in subjects with COPD compared to non-smokers and 10 significantly
differentially expressed proteins between subjects with COPD and smoking subjects with-
out COPD [55]. Two of the identified proteins, matrix metalloprotease 13 (MMP13) and
thioredoxin-like 2, were confirmed to be increased in COPD subjects with Western Blot and
immunohistochemical staining, with MMP13 localized to the alveolar macrophage and
type II pneumocytes and thioredoxin-like 2 found in the bronchial epithelium. Thioredoxin-
like 2, which contains thioredoxin, was found in the BALF proteome but not significantly
differentially expressed. However, MMP13 was not identified in our BALF study due to
differences in study populations and variable biocompartments.

4. Methods

We analyzed the protein quantifications derived from the BALF of subjects with COPD
and healthy ex-smoker control subjects via liquid chromatography and mass spectroscopy.
We then used pathway analysis tools to identify the relevant cellular pathways associated
with differentially expressed proteins quantified from the BALF analysis. We subsequently
employed the Computational Analysis of Novel Drug Opportunities (CANDO) platform
(https://github.com/ram-compbio/CANDO Accessed on 1 December 2021) to identify
FDA-approved drugs that could be repurposed to COPD based on their putative interaction
with the differentially expressed proteins. Using topological network analysis, we identified
putative hub proteins that modulate the cellular pathways associated with COPD. Using the
medical literature to predict the repurposed drugs effects on the most important hub protein,
we created a refined list of drugs predicted to modulate the cellular pathway to impede
COPD pathogenesis and generate proteomic interaction signatures for the compounds.

4.1. Recruitment of Subjects

BALF was obtained in a NHLBI-funded study of innate lung defense in COPD [56]. All pro-
cedures received approval from the Institutional Review Board (IRB), Veterans Affairs Western
New York Healthcare System (WNY-VA), and strictly adhered to institutional guidelines.

4.2. Ethics Statement

This study is a sub-study of a larger group of patients with COPD and healthy controls
to understand biological determinants of exacerbation frequency and was approved by the
Institutional Review Boards of the Veterans Affairs Western New York Healthcare System
and the University at Buffalo. The participants gave written consent to the study via an
IRB-approved consent form.

https://github.com/ram-compbio/CANDO
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4.3. Inclusion/Exclusion Criteria

The inclusion criteria and procedures for this study have been described previously
and are provided in the supplementary material [55]. After informed consent, 116 volun-
teers were divided into three groups: (1) healthy non-smokers, (2) ex-smokers with COPD,
and (3) active smokers with COPD who underwent bronchoscopy and bronchoalveolar
lavage. The methodology for bronchoscopy, lavage, and sample processing is included in
the supplementary material.

We selected BALF obtained from 10 ex-smokers with moderate COPD and 10 healthy
non-smoking controls for proteomic analysis, respectively. To minimize variability due to the
effects of acute smoking and disease severity, we confined this analysis to ex-smokers and
moderate stage 2 disease per the Global Obstructive Lung Disease (GOLD) [56] criteria of the
forced expiratory volume in 1 s (FEV1); 50–80% predicted with the ratio of FEV1 over forced
vital capacity (FEV1/FVC) < 0.70. All ex-smokers had ceased smoking for at least 1 year.

4.4. Bronchoscopy and BALF Sample Preparation

The research bronchoscopy and BALF sample preparation were performed as de-
scribed previously [57].

4.5. Protein Identification/Quantification

To investigate the soluble molecules in the epithelial lining fluid that may participate
in COPD pathogenesis, unbiased proteomic analysis of BALF commenced without protein
depletion or fractionation. Details of the methodology were published [21] and are also
provided in the supplementary material.

4.6. Long Gradient Nano-RPLC/Mass Spectrometry

The complete separation of the complex peptide mixture utilized a nano-LC/nanospray
setup [21]; the ion-current long gradient approach with mass spectrometry and subsequent
protein identification was performed as described in Tu et al. [21,58,59]. All proteins identi-
fied with one or more peptide hits, fold change of ≥1.5, and p-value < 0.05 are included as
part of the differentially expressed BALF proteome.

4.7. Bioinformatics Analyses
4.7.1. Manually Curated Pathway Analysis

Gene ontology, transcription factors, and expression locations were determined by up-
loading the protein expression dataset onto a web-based tool, the NIH’s Database for Annota-
tion, Visualization, and Integrated Discovery (DAVID) v6.7 (http://david.abcc.ncifcrf.gov/
Accessed on 21 March 2021) [22,23]. Biological networks were generated with Ingenuity
Pathway Analysis (IPA, Ingenuity Systems), a web-based relational database and network
generator. Proteins overrepresented in the uploaded datasets in biological networks, canonical
pathways, and biological processes were identified.

4.7.2. Literature Informed Protein-Protein and Protein-Drug Interaction Network

In addition to annotating differentially expressed proteins with the manually curated
pathways cataloged in IPA, a network of protein–protein interactions was created using
known regulatory relationships extracted from published scientific literature using the
MedScan text-mining engine [60] as well as protein–drug interactions cataloged in the
Reaxsys medicinal chemistry database (Elsevier, Amsterdam). These are embedded in
the broader Elsevier Knowledge Graph database [37] and were accessed via the Pathway
Studio interface (Elsevier, Amsterdam, The Netherlands) [61].

4.7.3. Shotgun Multiscale Drug Discovery Platform

We used the CANDO platform [62–69] to predict drugs that can be repurposed to treat
stable COPD. In CANDO, a compound/drug is potentially repurposable for an indication

http://david.abcc.ncifcrf.gov/
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when it is found to have similar binding interactions with a specific proteome or library of
proteins as a drug with known approval for the indication of interest.

This study calculated the interaction scores between 2450 United States Federal Drug
Administration (FDA)-approved drugs from the CANDO version 2.3 compound library
and a curated human library of 8385 proteins, including 5316 solved X-ray crystallogra-
phy structures and 3069 computed protein structures modeled by I-TASSER [70,71]. The
interaction scores were calculated using the bioanalytic docking (BANDOCK) protocol in
the CANDO, which utilizes predicted binding site information and chemical similarity
to determine an interaction score that is a surrogate for the likelihood of interaction be-
tween a compound and protein [62]. Binding sites were predicted for all human proteins
using COACH [72], which uses the consensus of three complementary methods utilizing
structure and sequence information to find similarities to solved structures in the Protein
Data Bank (PDB) [73,74]. For each binding site predicted by COACH, a confidence score
(PScore) and an associated co-crystallized ligand are output. The ligand is then compared
to the query compound/drug using chemical fingerprinting methods, which enumerates
the presence or absence of molecular substructures on the compound/drug. The Sorensen–
Dice coefficient [75,76] was used for the protein–ligand and compound/drug fingerprints
(CScore). The BANDOCK interaction score outputted for each compound–protein pair is
the product of the Pscore and the Cscore.

For this analysis, we focused on the differentially expressed proteins in the BALF
proteome (as described) and drugs used to treat COPD (“MESH:D029424”) (Table S1). We
selected proteins in the CANDO human protein library represented in the differentially
expressed BALF proteome. We then used the CANDO platform to predict the top drug
candidates that could be repurposed to treat COPD based on the compound–proteome
interaction signature similarity to drugs currently approved/used to treat stable COPD.
The protocol iterates through 34 known drugs used to treat stable COPD, counting the
number of times drugs not associated with COPD show up in the top 30 most similar
compounds to the known treatments, then outputs the consensus predictions ranked
by the number of times each compound appeared across all top 30 lists. The similarity
between a given drug and all other drugs in the library is determined by comparing their
proteomic interaction signatures using the cosine similarity metric. Compounds with
greater similarity scores rank stronger than those with low similarity. Thereby, drugs that
were most similar (in terms of interaction signatures) to multiple drugs used to treat COPD
will be ranked highest.

4.7.4. Network Topological Analysis

Although not a complete descriptor, the topological location and aspects of the con-
nectivity linking a node to a broader biological network can inform the node’s function in
mediating network behavior. Among the measures of a node’s importance or centrality,
betweenness centrality has been used to describe how a node might serve as an important
mediator of information flow in a regulatory network. In this work, Cb(n) for each node n
of a network was calculated using the Brandes algorithm [77]. The betweenness centrality
of a node n reflects the amount of control that this node exerts over the interaction between
communities of neighboring nodes in the network [78] and can be computed as follows:

Cb(n) = ∑
s 6=t 6=n

(σs,t(n)/σs,t) (1)

where s and t are the source and target nodes in the network different from n, σs,t denotes
the number of shortest paths from all s to all t, and σs,t(n) is the number of shortest paths
from s to t that must pass through node n. Here, unweighted betweenness centralities
were calculated for each node in the literature-informed protein–protein network. The
betweenness centrality scores for all nodes were expressed as fractions of the maximum
betweenness centrality present in the network. All calculations were conducted in R version
4.0.2 (Vienna, Austria) [79].
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4.7.5. Literature Based Drug Enrichment Analysis

Using putative drugs ranked by CANDO and further analyzed via the Elsevier knowl-
edge graph [37], a drug enrichment analysis was performed to predict which drugs can
most closely mimic an idealized intervention against the hub proteins identified in the
network topological analysis. Drugs are represented as vectors with a length equal to the
empirically derived number of protein entities in the network model. Each index value
is listed as 0 if there is no interaction between the drug and the corresponding model
entity, a 1 if the drug promotes that entity, or a–1 if the drug inhibits that entity. Next, the
cosine similarity, Sc, between each drug vector and the idealized intervention vector is
calculated [80]. Cosine similarity is calculated as:

Sc(D, M) =
D·M
‖D‖‖M‖

where D is the drug vector and M is the idealized intervention. Higher Sc indicates a
closer match between the drug vector and the idealized vector. An Sc of 1 means the
two vectors are identical, and −1 indicates that the two are exactly opposed. For multidrug
combinations, the net-effect of the individual drug vectors is calculated as:

sgn

(
n

∑
i=1

→
diDi

)

where n is the total number of drugs in the combination, Di is the vector corresponding to
the ith drug, and sgn is the sign function. The cosine similarity of the net-effect vector and
idealized vector is then calculated.

The statistical significance of these enrichment scores is determined empirically from
an estimated null distribution of cosine similarities. This null distribution uses a set of
model-relevant background drugs for which each interacts with at least one entity in the
network. All CANDO drugs of interest were included in the background. Empirical
p-values are estimated as

p̂ =
(r + 1)
(n + 1)

where r is the number of null Sc values greater than the observed Sc, and n is the total
number of null Sc values.

4.8. Statistical Analysis

Statistical analysis was performed with SPSS/19. Demographic values were depicted
as mean ± SEM.

5. Conclusions

In summary, our work provides a valuable pipeline for identifying many proteins
associated with COPD pathogenesis that illustrate the complexity of the development
of this disease and identify putative therapeutic treatment options using cutting-edge
bioinformatics approaches. Identifying differentially expressed proteins will form the basis
for future mechanistic studies of critical pathways and novel treatment discovery. The
validation of our proposed therapeutic approach in animal models and human pilot studies
are important next steps.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph15050566/s1, Figure S1: IPA Network 1: Cellular Movement, Inflammatory Response,
Cardiovascular System Development and Function. Figure S2: IPA network 2: cell death and sur-
vival, drug metabolism, small molecule biochemistry. Figure S3: IPA network 9: cellular movement,
hematological system development and function, immune cell trafficking. Figure S4: IPA network
11: cell cycle, visual system development and function, hair and skin development and function.
Figure S5: IPA network putative upstream regulators. Table S1: Drugs commonly prescribed for
stable COPD. Curated drugs currently indicated for COPD ("MESH:D029424") from the Comparative
Toxicogenomics Database2 and manually curated to include drugs used to treat stable COPD in the
United States. Table S2: Unique proteins upregulated in BALF (n = 95), Differentially expressed
proteins with at least 1.5x fold change increase in the BALF proteome in COPD versus control cohort
samples. Table S3: Unique proteins downregulated in BALF (n = 138). Differentially expressed
proteins with at least 1.5x fold change decrease in the BALF proteome in COPD versus control cohort
samples. Table S4: See David_FuncAnnotClustering_BALF.csv for DAVID functional annotation
clustering file. Table S5: Transcription factors associated with binding sites on genes from differ-
entially expressed proteins in BALF. Transcription factors that have association with binding sites
on genes from differentially expressed proteins in BALF as noted by DAVID [ref]. Table S6: Top
functional networks of differentially expressed molecules in the BALF proteome. The top biological
functions associated with molecular pathways imputed with IPA that are significantly associated
differentially expressed molecules measured in the BALF proteome. Red represents upregulated, and
green represents downregulated proteins. The networks are collections of interconnected molecules
assembled by a network algorithm. Each connection represents known relationships between the
molecules, found in the Ingenuity Knowledge Base. The score is the degree of relevance of network
eligible molecules to the BALF dataset. The score takes into account the number of network eligible
molecules in the network and its size, as well as the total number of network eligible molecules
analyzed and the total number of molecules in the Ingenuity Knowledge Base that could potentially
be included in networks. The network score is based on the hypergeometric distribution and is
calculated with the right-tailed Fisher’s Exact Test: Score=-log(Fisher’s Exact test result). Focus
Molecules are the number of proteins identified in the BALF proteome that is found in the network.
Table S7: Computational drug prediction CANDO Table S8: Predicted interactions of drugs treating
respiratory diseases and central node proteins.
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