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Abstract

Knowledge of transcriptional regulatory interactions (TRIs) is essential for exploring functional genomics and
systems biology in any organism.While several results fromgenome-wide analysis of transcriptional regulatory
networks are available, they are limited to model organisms such as yeast (1) and worm (2). Beyond these
networks, experiments onTRIs studyonly individual genes andproteins of specific interest. In this chapter, we
present a method for the integration of various data sets to predict TRIs for 54 organisms in the Bioverse (3).
We describe how to compile and handle various formats and identifiers of data sets from different sources and
how to predict TRIs using a homology-based approach, utilizing the compiled data sets. Integrated data sets
include experimentally verified TRIs, binding sites of transcription factors, promoter sequences, protein
subcellular localization, and protein families. Predicted TRIs expand the networks of gene regulation for a
large number of organisms. The integration of experimentally verified and predicted TRIs with other known
protein–protein interactions (PPIs) gives insight into specific pathways, network motifs, and the topological
dynamics of an integrated network with gene expression under different conditions, essential for exploring
functional genomics and systems biology.

Key words: Regulog, interolog, protein–DNA interaction prediction, transcriptional regulatory
interaction (TRI) prediction, protein–protein interaction (PPI) prediction, homology-based
approach, transferability of homologs.

1. Introduction

Transcriptional regulation controls the production of functional
gene products essential for determining cell structure and func-
tion. It controls the amount of gene product and replenishment of
degraded protein. This is fundamental for the differentiation,
morphogenesis, versatility, and adaptability of the cell. Expanding
the knowledge of gene regulation and understanding how it
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relates to protein–protein interactions and gene expression pro-
vides insight into gene function and the mapping from genotypes
to phenotypes. This knowledge is fundamental for advancing
the design and development of biotechnology and medical
treatments.

Though there have been several genome-wide studies of
transcriptional regulatory networks, they have been focused on
only a few model organisms (1, 4–7). Aside from those formed
by genome-wide studies, only networks comprising small, specific,
well-studied pathways are available (8–10). Based on publicly
accessible databases of genome-wide transcriptional data and
regulatory interactions with experimental verification (9, 11–13),
several computational studies have reported the building of
transcriptional regulatory networks (14–19), based upon the
prediction of binding sequences of DNA and binding sites of
transcription factors (20–26).

Among these approaches, the transferability of biological
functions between homologous genes, originally proposed by Yu
et al. (27), has been widely studied and deployed (3, 27–35). Thus,
this chapter explores the transferability of protein–DNA interac-
tions between organisms, or regulogs. This approach presumes
that similarities in the sequence and structure of gene products
suggest similar function.

We predict TRIs for an organism based on the transfer-
ability of similar interactions from other source organisms (see
Fig. 6.1). In other words, we try to map the available TRIs in
a source organism onto the target organism to find similar
interactions.

The similarities of a predicted TRI (ITFx0!TFTy0) transferred
from a source organism is defined as the geometric mean (the
square root) of sequence similarities between (1) a transcription
factor of an interaction in a source organism (TF) and its ortholog
(Note 1) in a target organism (TF0) defined as ITF-TFx0, and (2) a
sequence of transcription factor target in the source organism
(TFT) and its ortholog in the target organism (TFT0) defined as
ITFT-TFTy0. To map a TRI from a source organism onto a target
organism, the interaction in the target organism needs to satisfy
the following three conditions (27):
i) TF and TF0 are orthologs.

ii) TFT and TFT0 are orthologs.

iii) The binding sites and binding sequences of TF appear in the
upstream region of the TFT0.
Corresponding to the above conditions, if a TF regulating a

TFT in a source organism has orthologs TF0 and TFT0 in a target
organism, the pair of the interactions TF ! TFT and TF0!
TFT0 are called regulogs (Note 2) (see Fig. 6.1). We can
improve the accuracy and coverage of the resulting predictions
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by filtering out false-positive predictions using other data
sources such as gene expression in differing cell cycle stages,
protein localization, and membership in protein families. We
have used these methods to predict regulogs for all 54 organisms
in the Bioverse (3).

The major procedures involved in the prediction and integra-
tion of regulatory protein–DNA and protein–protein interactions
include: (1) the preparation of essential data sets, including source
experimental TRIs, binding sites and binding sequences of the
experimentally verified transcription factors, the upstream regions
of genes in target organisms, and name mapping between different
identification systems; (2) the preparation of additional data sets,
such as protein localization and assignment to protein families, for
filtering and improving the accuracy of the predictions; (3) the
determination of similarity between two protein sequences;
(4) the prediction of the TRIs; and (5) the benchmarking of the
prediction (see Fig. 6.2).

Fig. 6.1. Homology-based transcriptional regulatory interaction prediction.
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While we present these steps in the context of TRI prediction,
the methods and problems of data preparation are common
steps in a large number of bioinformatics processes, especially in
large-scale systems covering the genomes of multiple organisms.
Specifically, the name mapping problem is ubiquitous; it makes all
bioinformatics of this type difficult and decreases the coverage and
certainty of predictions.

2. Methods

2.1. Preparing

Data Sets

As homology-based approaches exploit the transferability of
TRIs available in a source organism onto a target organism, the
gathering of available interactions from different source organisms
is the first essential step. This step is complicated as multiple
sources provide different sets of non-comprehensive interactions
for specific organisms, with varied data formats. The collection of
data from several different sources, however, is essential for
expanding the coverage of source TRIs for the prediction and
construction of a gold-standard test set for the benchmarking.
Table 6.1 summarizes the sources of our experimental TRIs.

2.1.1. Source Experimental

TRIs, Binding Sites, and

Binding Sequences

Source experimental TRIs, binding sites, and binding sequences
were compiled from two main sources: (1) public databases
TRANSFAC1 7.0 (12), SCPD (36), BIND (37, 38), WormBase
(39) via WormMart (40), RegulonDB (13), and DBTBS (11),

Fig. 6.2. Major steps in the prediction of transcriptional regulatory interactions.
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and (2) supplemental data from experimentally determined TRIs
described in the literature (1). As methods for gathering and
transforming experimental TRIs, binding sites, and binding
sequences into a unified format vary among different sources
(Notes 3, 4, 5), we describe each of them in the following
sections. To extend the compiled TRIs for the same organism
from different sources, see Note 6.

2.1.1.1. TRANSFAC1 TRANFAC1 (12) is a database of transcription factors, their
genomic binding sites, and DNA-binding profiles for eukaryotes.
This database has two versions: (1) TRANSFAC1 Professional,
allowing bulk data downloads, and (2) TRANSFAC1 Public
Database, for online query only. We describe how to compile the
experimental TRIs for each eukaryote in the Bioverse from the
TRANSFAC1 public database.
1. Go to the main searching page found at http://www.gene-

regulation.com/cgi-bin/pub/databases/transfac/search.cgi,
select ‘‘Factor’’ as the table to search.

Table 6.1

Sources of experimental TRIs for source organisms

Source experimental TRIs Source organisms Description

TRANSFAC1 (1)

(þ binding sites and
binding sequences)

S. cerevisiae,

H. sapiens,

M. musculus,

R. norvegicus,

D. melanogaster,

C. elegans,

A. thaliana,

O. sativa

A database of eukaryotic transcription factors,
genomic binding sites, and DNA-binding
profiles

SCPD (36) (þbinding
sequences)

S. cerevisiae The promoter database of S. cerevisiae

BIND (37, 38) H. sapiens The biomolecular interaction network
database

WormBase (39, 40) C. elegans A database for genomics and biology of
C. elegans

RegulonDB (13) E. coli A database of Escherichia coli K-12
transcriptional regulatory network, operon
organization, and growth conditions

DBTBS (11)

(+ binding sites
and binding sequences)

B. subtilis A database of transcriptional regulation
in B.subtilis

Supplemental data from
literature (1)

S. cerevisiae Transcriptional regulatory networks in
S. cerevisiae
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2. On the page ‘‘searching in table Factor,’’ select ‘‘Organism
Species (OS)’’ as the table field to search, and specify a specific
organism name (e.g., Saccharomyces cerevisiae,Homo sapiens)
as the search item. Set the limit of hits per page to the highest
available (100), and then submit the search request. Save
the results and edit them to contain only a list of accession
numbers (one per line). These accession numbers correspond
to transcription factors of the specified species.

3. Use our Python script:run_queryWeb to query detailed
information about each transcription factor listed in the
results. The Python script programmatically specifies a
CGI search for a specific transcription factor, retrieves
the search result, and writes it into a new file with a
name matching the accession number. Following this,
use the script: run_extractInfoFrom TRANSFACTFHtml-
Files to extract the transcription factors and their (1)
target genes, (2) binding sites, and (3) synonyms, into
three separate files. To extract the binding sites to binding
sequences, use script: run_extractBindingSeq.

2.1.1.2. SCPD SCPD (36) is a database of promoters found within the S. cerevisiae
genome. This database contains experimentally mapped transcrip-
tion factor binding sites and transcription start sites as main entries.
Wemanually compile the experimental TRIs from SCPD, using the
following steps:
1. Go to http://rulai.cshl.edu/cgi-bin/SCPD/getfactorlist,

click on the link for each transcription factor (e.g., ACE1,
ADR1), and the corresponding page will appear.

2. Click on ‘‘Get regulated genes’’ button, and a list of genes
regulated by the transcription factor will appear. Click on each
of the regulated gene, a new window will appear. Save this
window into a local file with the name of the regulated gene.
Make this local file under a directory named by the transcrip-
tion factor.

3. Make a name list of the transcription factors as an input for the
script: run_parseSCPDToGetTRIs. Use this script to extract
the source experimental TRIs for S. cerevisiae from SCPD into
a file. Append this file to the source experimental TRIs of
S. cerevisiae from other sources.

2.1.1.3. BIND BIND (37, 38) is a database of biomolecular interactions, reac-
tions, complexes, and pathway information. This database includes
imported experimental TRIs from published research. BIND now
becomes a component database of BOND (Biomolecular Object
Network Databank). In addition to TRANSFAC1, we compile
the experimental TRIs of H. sapiens described in (41–43) from
BIND, using the following steps:
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1. Go to BOND (Note 7) http://bond.unleashedinformatics.
com/Action? and register for a free account. Log in to
BOND after getting the account. A BOND search page will
appear.

2. Click on the ‘‘Identifier search’’, a new window will appear.
Select ‘‘PubMed Id’’ as the identifier from the list box on the
left, and input the PubMed identifiers (PMIDs, Note 8) of
the papers (41–43) one at a time into the text input on the
right. Then, click on the ‘‘Search’’ button. A search result
window will appear.

3. Click on the ‘‘Interactions’’ tab, a new window will appear.
On the ‘‘Export Results:’’ list box, select ‘‘Cytoscape SIF’’, a
pop-up window for saving the exported result will appear.
Save file into a local directory, edit it to have the format
ready for use by the system. Append this file to the source
experimental TRIs of human from other sources.

2.1.1.4. WormBase WormBase (39, 40) is a database of genomics and biology of
Caenorhabditis elegans and related nematodes. We compile the
experimental TRIs of C. elegans from the database using the
following steps:
1. Go to http://www.wormbase.org/ and select a tab ‘‘Worm

Mart’’ at the top of the page. A martview window will appear.

2. In this window, select the latest release of WormBase (i.e.,
‘‘WormBase ReleaseWS198’’) for the ‘‘Version:’’ list box, select
‘‘Gene’’ for the ‘‘Dataset:’’ list box, and click on the ‘‘next’’
button. A window for filtering the queried data set will appear.

3. Under the ‘‘Identification’’ section on this window, check box
‘‘[Gene] Species’’ and select ‘‘Caenorhabditis elegans’’ in the list
box, which corresponds to the check box. Also, check box
‘‘[Gene] Status,’’ and select ‘‘Live’’ in its corresponding list box.

4. Under the ‘‘Annotation’’ section, check box ‘‘Limit to Entries
Annotated with:,’’ select ‘‘[Function] Trans. Regulator Gene’’
and ‘‘Only’’ in the corresponding list box, and radio box, respec-
tively. Leave all other boxes as defaults. Click on the ‘‘next’’
button. A new page for formatting the output will appear.

5. Under the ‘‘IDs’’ section, uncheck boxes ‘‘Gene WB ID’’ and
‘‘Gene Public Name’’. Under the ‘‘Gene Regulation’’ section,
check boxes ‘‘RegulatorGene (Public Name)’’ and ‘‘Regulated
Gene (Public Name).’’ Under the ‘‘Select the output format:’’
section, check radio box ‘‘Text, tab separated.’’Under the ‘‘File
compression:’’ section, check the radio box ‘‘gzip (.gz).’’
Under the ‘‘Enter a name for this result set:’’ section, enter a
file name for the exported result. Leave all other boxes as
defaults. Click on the ‘‘export’’ button. Save the exported file
to a local directory.
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6. Use the script: run_parseWormBaseToGetTRIs to extract the
source experimental TRIs for C. elegans into a file. Append
this file to the source experimental TRIs of C. elegans from
other sources.

2.1.1.5. RegulonDB RegulonDB (13) is database of the regulatory network and operon
organization of Escherichia coli K-12. It is one of the two public
databases of prokaryotes from which we compile source experi-
mental TRIs. To compile experimental TRIs from RegulonDB,
use the following steps:
1. Go to http://regulondb.ccg.unam.mx/, follow the tab

‘‘Downloads’’ and click on the ‘‘Data Sets’’ item.

2. On the page ‘‘Downloadable DataSets,’’ save ‘‘File 1. TF – gene
interactions’’ (for experimental TRIs) and ‘‘TF binding sites’’
files (for binding sites and sequences) into a local directory. Edit
these two files to have the same format as of the files generated
for TRANSFAC.

2.1.1.6. DBTBS DBTBS (11) is a database of transcriptional regulation of Bacillus
subtilis. It is the other public database of prokaryotes used in this
study. This database provides online access, but does not allow
bulk download or programmatic search via CGI interface. To get
the experimental TRIs of B. subtilis, we contacted the authors of
(11) and asked for the experimental TRIs. The authors kindly gave
us the requested data set in XML format. We wrote two scripts:
run_extractDBTBSForTFsAndBS and run_extractDBTBSForTRIs
that call our Python codes to parse and extract the (1) TRIs,
(2) binding sites, and (3) binding sequences from this XML file,
andwrite them to the experimental TRIs, binding sites, and binding
sequence files, respectively.

2.1.2. Upstream Regions Upstream regions of transcription factor target genes were
compiled from (1) SGD (44) for S. cerevisiae, (2) UCSC (45) for
H. sapiens (46), Mus musculus (47), Rattus norvegicus (48), and
Drosophila melanogaster (49), (3) WormBase (39) for C. elegans
(50), (4) TAIR (51) for Arabidopsis thaliana (52–55), (5) TIGR
Rice Genome Annotation database (56) for Oryza sativa (57),
and (6) NCBI for all prokaryotes, including E. coli, B. subtilis,
etc. As methods for gathering and extracting the upstream regions
and transforming them into a unified format vary among sources
(Notes 9, 10), we describe these methods as follows.

2.1.2.1. SGD

for S. cerevisiae

1. Go to http://www.yeastgenome.org/ (44).

2. On the left side of this main page, in section ‘‘Download
Data,’’ select ‘‘FTP.’’ A list of a directory in a new page will
appear. From here, go into the ‘‘sequence’’ directory, then
‘‘genomic_sequence’’ directory, and then the ‘‘orf_dna’’
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directory. Copy the file orf_genomic_1000_all.FASTA.gz
into a local directory. This file contains ORF sequences with
introns, untranslated regions 1,000 bp upstream of the initial
ATG and 1,000 bp downstream of the stop codon.

3. Use our code script: run_extractUpstreamRegions_1000 bp_
saccharomyces_cerevisiae to parse and extract the saved file
into a mapping file between the ORFs and their correspond-
ing upstream regions.
See (Note 11) for an alternative way to get the upstream

regions for S. cerevisiae.

2.1.2.2. UCSC Genome

Browser for H. sapiens,

M. musculus,

R. norvegicus,

and D. melanogaster

1. Go to http://hgdownload.cse.ucsc.edu/downloads.html (45).

2. In the box ‘‘Sequence and Annotation Downloads,’’ search
for a specific organism. Select ‘‘Human,’’ for instance. This
jumps to the ‘‘Human Genome’’ box. In the box ‘‘Human
Genome,’’ select ‘‘Full data set,’’ which leads to a directory
page containing a list of finished human genome assemblies
with their descriptions.

3. Click on the upstream<xxx>.zip to download the files. These
files are zipped and are in FASTA format, with each upstream
sequence associated with an identifier system that is specific to
an organism (i.e., NM_xxxx RefSeq in case of human, mouse,
and rat, and FlyBase symbol in case of fly). The detailed
descriptions of these upstream files are described on the same
page. Basically, xxx in the name of an upstream region file
stands for 1,000, 2,000, and 5,000 to represent the number
of bases of each upstream region in each file (Note 12).

4. After downloading these files, use script: run_extract_
NP_NM_homo_sapiens to parse and extract the mapping
between NCBI GenBank identifiers (GIs) of human proteins
to their corresponding RefSeq identifiers and use run_extract
UpstreamRegions_<xxx>bp_homo_sapiens to generate a
mapping file from GIs to upstream regions ready for use by
the system.

5. Repeat Steps 1–4 for ‘‘Mouse’’ and ‘‘Rat.’’

6. Use script: run_extractUpstreamRegions_<xxx>bp_drosophila_
melanogaster to extract the upstream region file ofDrosophila into
a mapping file between FlyBase symbols and their corresponding
upstream regions.
SeeNote 13 for an alternative way to get the upstream regions

for H. sapiens.

2.1.2.3. WormBase

for C. elegans

1. Go to http://www.wormbase.org/db/searches/advanced/
dumper (39).

2. In the ‘‘1. Input Options’’ box, type in ‘‘I II III IV V X XX
XO.’’ These correspond to the chromosomes ofC. elegans. In
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the ‘‘2. Select one feature to retrieve,’’ click on ‘‘5 UTRs.’’ In
the ‘‘3. Output options,’’ check box ‘‘flanking sequences
only,’’ specify the flanking sequence lengths (i.e., 1,000 bp
50 flank, 0 bp 30 flank), leave the coordinates relative to
‘‘Chromosome,’’ select the sequence orientation as ‘‘Always
on canonical strand,’’ select the output format ‘‘Save to disk
(Plain TEXT),’’ then click ‘‘DUMP’’ button. The saved file is
in FASTA format in which each upstream region is associated
with a sequence name (gene model) and genetic nomencla-
ture for C. elegans.

3. Use script: run_extractUpstreamRegions_1000 bp_caenor
habditis_elegans to parse, extract, and transform the saved
file into amapping file fromGIs to upstream regions ready for
use by the system.

2.1.2.4. TAIR for A. thaliana 1. Go to ftp://ftp.arabidopsis.org/home/tair/Sequences/
blast_datasets/ (51).

2. Save files TAIR_upstream_xxx_yyyymmdd, where xxx repre-
sents the number of base pairs, and yyyymmdd represents
the date the files are generated. These files are in FASTA
format, with each upstream sequence associated with an
Arabidopsis Genome Initiative locus identifier (AGI ID)
(e.g., At1g01120).

3. Use script: run_extractUpstreamRegions_1000 bp_arabidopsis_
thaliana to parse, extract, and transform the saved files into a
mapping file from AGI IDs to their corresponding upstream
regions.

2.1.2.5. TIGR for O. sativa 1. Go to ftp://ftp.tigr.org/pub/data/Eukaryotic_Projects/
o_sativa/annotation_dbs/pseudomolecules/ (56), select the
directory ‘‘version_x.x,’’ where x.x is the latest (i.e., version_5.0,
for the current release), and then select the directory ‘‘all_chrs.’’
Under this directory, save file ‘‘all.1kUpstream’’ into a local
directory (Note 14).

2. Useour script: run_extractUpstreamRegions_1000bp_TIGRRice
to parse, extract, and transform the saved file into a mapping
file from TIGR_LOCUS IDs (e.g. LOC_Os01g01030.1) to
their corresponding upstream regions.

2.1.2.6. NCBI for

Prokaryotes

1. For E. coli K-12, go to ftp://ftp.ncbi.nlm.nih.gov/genomes/
Bacteria, and enter the ‘‘Escherichia_coli_K12’’ directory.

2. Save files ‘‘xxx.fna’’ and ‘‘xxx.ptt’’ into<organism>_Genome.fna
and <organism>_ProteinMap.ptt, respectively, where file with
fna extension contains complete genome sequence, and file
with ptt extension contains locations, the start and stop positions,
for each gene on the genome sequence. For genomes that
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have only sequences for chromosomes such as Plasmodium
falciparum, save ‘‘xxx.fna’’ and ‘‘xxx.ptt’’ into <organism>_
chr<n>.fna and <organism>_chr<n>_ProteinMap.ptt,
respectively.

3. Repeat Steps 1 and 2 for all bacteria and other prokaryotes.

4. Use script: run_extractGIsToUpstreamRegionsFromGenome
SeqAnd ProteinMap to parse, extract, and transform the saved
files into a mapping file from GIs to upstream regions for the
organisms.

2.1.3. Name Mapping Name mapping is another essential part of data preparation. Data
sets such as transcription factors and transcription factor targets in
the experimental TRIs and the upstream regions of gene sequences
from several sources are associated with their own identifiers (e.g.,
common names of TFs and TFTs in TRANSFAC1, ORFs from
SGD, GenBank Identifiers at NCBI (GIs), gene IDs from Entrez
Gene, WormBase IDs, FlyBase symbols, and AGI IDs for worm,
fly, and Arabidopsis, and Refseq for upstream regions). Therefore,
we map these identifiers to protein identifiers in the Bioverse
(Note 15) for the prediction of protein–DNA interactions and
the integration of protein–DNA and protein–protein interaction
networks. In the following text we describe various name map-
pings required by the system.

2.1.3.1. Name Mapping

from TFs, TFTs to Protein

IDs in the Bioverse

To integrate the regulatory and protein–protein interactions,
the TFs and TFTs from source experimental TRIs described in
Section 2.1.1 map to protein IDs in the Bioverse. While the
Bioverse provides an ID-mapping file consisting of different ID
systems (i.e., GIs from NCBI, ORFs from SGD, AGI IDs from
TAIR) to protein IDs in the Bioverse, what we mainly have for the
TFs and TFTs from source experimental TRIs are their common
names. Hence, we establish an intermediate mapping that links
these common names to protein IDs in the Bioverse (Notes 16, 17).
The building process of an intermediate mapping file varies
according to the ID system that will be used as the intermediate.
We describe how to handle name mapping from the common
names of TFs and TFTs in source experimental TRIs to protein
IDs in the Bioverse, according to the formats for respective
organisms.

Saccharomyces cerevisiae

1. Go to http://www.yeastgenome.org/gene_list.shtml (44).

2. Save file SGD_features.tab into a local directory.

3. Use script: run_extractNameMappingFromSGD to extract
SGD_features.tab into a mapping file between the systematic
ORF names and their common names.
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Prokaryotes and Other Eukaryotes

1. Go to http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=
gene, on the left side, click on ‘‘Downloads (FTP).’’ A new page
of directories will appear. Go into directory ‘‘DATA’’ and save the
files gene2refseq.gz and gene_info.gz into a local directory.

2. Use scripts:run_extract_gi_to_gene_id and run_extract_
gene _id_to_names to extract the gene2refseq and gene_info,
respectively, and then use run_buildGIToNames to generate
a mapping file from GIs to names for the organisms listed as
an input of the script. For eukaryotes, we can improve the GI
to name mapping with additional synonyms extracted from
TRANSFAC1.

Homo sapiens

Human genes do not have well-defined gene names as do genes in
organisms such as yeast (Note 18). As the ID-mapping file for
human in the Bioverse largely contains GI records, we decided to
use GIs as intermediate ID mapping from a common name to a
protein ID in the Bioverse. The original mapping file from GIs to
common names is generated from gene2refseq and gene_info in
Entrez Gene as described above. To refine the name mapping file,
we combine synonyms (aliases) from additional sources such as
TRANSFAC, HUGO (58), and OMIM (59), using methods
listed as follows (Note 19).

l Method to compile and extract synonyms from TRANSFAC1

The synonyms of transcription factors are a part of the source
TRIs compiled fromTRANSFAC1. Hence, we do not need a separate
compilation. As the script: run_extractInfoFromTRANSFACTF
HtmlFiles_homo_sapiens also extracts the synonyms for each human
transcription factor, we only need to combine the resulting file to the
original GI-to-name mapping file from Entrez Gene using the script:
run_addSynonyms.

l Method to compile and extract synonyms from HUGO Gene
Nomenclature Committee (HGNC)

We compile and extract synonyms from HGNC using the
following steps:

� Go to http://www.genenames.org/ and click on the
‘‘Downloads’’ button at the top. The new page of data-
base downloads will appear. Click on ‘‘Custom Down-
load’’ listed in a box at the top of the page. A ‘‘Custom
Downloads’’ page will appear.

� Check boxes: ‘‘Approved Symbol,’’ ‘‘Approved Name,’’
‘‘Previous Symbols,’’ ‘‘Previous Names,’’ and ‘‘Aliases.’’
Check boxes ‘‘Approved’’ for the select status, and ‘‘Select
all Chromosomes.’’ Scroll down and select the ‘‘ORDER
BY’’ to change to the ‘‘Approved Symbol,’’ and the
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‘‘Output format’’ to be ‘‘Text.’’ Then, click the ‘‘submit’’
button. The result of the customized query will pop up in
a new window. Save the result into a local file.

� Use script: run_extracHumanGeneSynonymsFrom-
HUGO. This script extracts approved symbols, approved
names, previous symbols, previous names, and aliases from
all approved human genes into a file that will be used by
script: run_addSynonyms to combine these names into the
human GI-to-name mapping file.

l Method to compile and extract synonyms from OMIM
� Go to http://www.ncbi.nlm.nih.gov/entrez/query.

fcgi?db=OMIM. On the left side, under the FAQ section,
click ‘‘Download.’’ A new OMIM FAQs page will appear.
Under ‘‘Downloading OMIM’’ section in item 1, click on
‘‘omim.txt.Z’’ to download the complete text of OMIM
and save it into a local directory.

� Use script: run_extracHumanGeneSynonysFromOMIM
to extract the gene_ symbols and their synonyms from
file omim.txt and write these extracted names into an
output file. The script: run_addSynonyms combines
these names into the human GI-to- name mapping file.

Caenorhabditis elegans

To extend the mapping fromGIs to names forC. elegans generated
by run_buildGIToNames, we compile gene aliases of C. elegans
from WormBase via WormMart using the following steps:
1. Go tohttp://www.wormbase.org/and select a tab ‘‘WormMart’’

at the top of the page. A martview window will appear.

2. In this window, select the latest release of WormBase (i.e.,
‘‘WormBase Release WS198’’) for the ‘‘Version:’’ list box, select
‘‘Gene’’ for the ‘‘Dataset:’’ list box, and click on the ‘‘next’’
button. A window for filtering the queried data set will appear.

3. Under the ‘‘Identification’’ section on this window, check box
‘‘[Gene] Species’’ and select ‘‘Caenorhabditis elegans’’ in the
list box, which corresponds to the check box. Also, check box
‘‘[Gene] Status,’’ and select ‘‘Live’’ in its corresponding list
box. Leave all other boxes as defaults. Click on the ‘‘next’’
button. A new page for formatting the output will appear.

4. Under the ‘‘IDs’’ section, check box ‘‘GeneNames (merged).’’
Under the ‘‘Proteins’’ section, check box ‘‘NCBI Protein GI.’’
Under the ‘‘Select the output format:’’ section, check radio box
‘‘Text, tab separated.’’ Under the ‘‘File compression:’’ section,
check the radio box ‘‘gzip (.gz).’’ Under the ‘‘Enter a name for
this result set:’’ section, enter a file name for the exported
result. Leave all other boxes as defaults. Click on the ‘‘export’’
button. Save the exported file to a local directory.
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5. Use the script: run_addSynonymsForC_elegans to append
these aliases into the available namemapping file forC. elegans.

Arabidopsis Thaliana

1. Go to ftp://ftp.arabidopsis.org/home/tair/Genes/.

2. Save file gene_aliases.20080716 into a local directory. This
file contains the mapping from AGI IDs to gene aliases in the
format ‘‘AGI ID name1 name2’’ which is ready for use by the
system.

Oryza Sativa

The ID name mapping file provided by the Bioverse for O. sativa
does not include any intermediate ID that could be linked to
the common names of transcription factors and their targets in
the source experimental TRIs of rice, so we use the following steps
to build a mapping file from the common names of rice proteins to
the protein IDs in the Bioverse.
1. Go to ftp://ftp.tigr.org/pub/data/Eukaryotic_Projects/

o_sativa/annotation_dbs/pseudomolecules/ (56), select the
directory ‘‘version_x.x,’’ where x.x is the latest (i.e., version_5.0,
for the current release), and then select the directory ‘‘all_chrs.’’
Under this directory, save file ‘‘all.pep’’ into a local directory.

2. Perform BLASTP from rice protein sequences retrieved from
the Bioverse to protein sequences in all.pep using script: run_
blastp_bioverse_<rice species>_to_TIGR-rice, where rice
species could be ‘‘oryza_sativa_japonica_fl,’’ ‘‘oryza_sativa_
japonica_syngenta,’’ and ‘‘oryza_sativa_indica_9311.’’

3. Use scripts: run_extractBLASTPSimilarity and run_extract
TIGRLOCUSTo BioverseId to extract the BLASTP result
and then transform them into a mapping file from
TIGR_LOCUS IDs to Bioverse IDs.

4. Use script: run_buildTIGRRiceCommonNamesToBid to
extract all.pep file into a mapping file from TIGR_LOCUS
to names.

2.1.3.2. Name Mapping

of an ID System Associated

with the Upstream

Sequences from Different

Sources to Protein IDs in the

Bioverse

In this section, we describe howwe build amapping from a specific
ID system associated with the upstream sequences of a specific
organism to their corresponding protein IDs in the Bioverse.

Saccahromyces cerevisiae

The upstream regions of S. cerevisiae are annotated with the same
sets of ORFs from SGD. Hence, we do not have the problem of
mapping from these ORFs to protein IDs in the Bioverse.
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Homo sapiens, Mus musculus, and Rattus norvegicus

The upstream regions of human, mouse, and rat compiled from
UCSC Genome Browser (45) are annotated with NM_xxxx,
which are the RefSeq accession numbers for nucleotide sequences.
However, the name mapping from common names to protein IDs
in the Bioverse is via NCBI GenBank Identifiers (GIs). Hence,
these RefSeq numbers are not directly usable by the system. To
handle this mapping issue, we use the following steps to transform
the RefSeq accession numbers to protein GIs.
1. Go to ftp://ftp.ncbi.nih.gov/refseq/H_sapiens/mRNA_Prot/

and save file human.protein.gpff.gz into a local directory. This
file contains GenBank records of NP_xxxx, which are the RefSeq
accession numbers for protein sequences in human that are
associated with GIs and NM_xxxx.

2. Extract the mapping between NP_xxxx, NM_xxxx RefSeq
numbers and protein GIs using our script: run_extract_
NP_NM_homo_sapiens. This code will result in a mapping
file of GIs, NP_xxxx and NM_xxxx. The extracted mapping
will be used as an input of script: run_extractUpstream
Regions_1000bp_homo_sapiens for extracting the upstream
regions mentioned in Section 2.1.2 for human.

3. Repeat Steps 1 and 2 for mouse and rat by accessing:
ftp://ftp.ncbi.nih.gov/refseq/M_musculus/mRNA_Prot,
and ftp://ftp.ncbi.nih.gov/refseq/R_norvegicus/mRNA_
Prot, respectively.

Oryza sativa

The compiled upstream sequences ofO. sativa (cultivarNipponbare
ofOryza sativa L. ssp. japonica) are associated with TIGR_LOCUS
IDs. As we have built a mapping file from TIGR_LOCUS IDs to
protein IDs in the Bioverse, we do not encounter the mapping
problem for this genome.

Arabidopsis thaliana

The compiled upstream sequences of A. thaliana are associated
with AGI IDs that are also available in the ID-mapping file provided
by the Bioverse, so we do not encounter the mapping problem for
this genome.

Drosophila melanogaster

While we compiled the upstream region files of D. melanogaster
from UCSC as of human, mouse, and rat, the upstream sequences
of the fly are not associated with RefSeq numbers. Instead, they
are associated with FlyBase symbols that are also available in the
ID-mapping file provided by the Bioverse. So, in case of fly, to
extract the upstream regions, we use a script similar to the script of
extracting the upstream region from FASTA format for yeast and
Arabidopsis.
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Prokaryotes

As we compile and extract the upstream regions of prokaryotes
from NCBI, where genes and proteins are already associated with
nucleotide and protein GIs, we do not have a mapping problem
from an ID system associated with the upstream sequences to
protein IDs in the Bioverse.

2.2. Preparing

Additional Data Sets

This section describes the preparation of additional data sets
utilized for improving the accuracy of TRI predictions.

2.2.1. Preparing

Protein Localization

Protein localization is employed as a filter for improving the
accuracy of the predicted TRIs. It strongly correlates with
mRNA co-expression, as well as physical and functional interac-
tions (60, 61).We compile protein localization data for S. cerevisiae
from the TRIPLES database (62, 63) and Yeast GFP Fusion
Localization database (60) (Notes 20, 21). To retrieve the protein
localization data from these databases, use the following steps.

2.2.1.1. TRIPLES 1. Go to ftp://ygac.med.yale.edu/ygac_pub_ftp/.

2. Save the file localization_pub_data_9_4_01.tab into a local
directory and use script: run_extractPLOCFromTRIPLES to
extract the ORFs and their localizations into a file ready for
use by the system.

2.2.1.2. Yeast GFP Function

Localization Database

1. Go to http://yeastgfp.ucsf.edu/.

2. Within the banner at the top of the page, click on ‘‘Go’’ for the
advanced query. A new page will appear. In this page, leave
‘‘SearchCriteria’’ as default, where the inputs of all search criteria
including of the ‘‘Subcellular Localization’’ will be wildcards (*).
For the ‘‘Display Options,’’ check the box ‘‘Download the
selected dataset as a tab-delimited file’’ and box ‘‘include locali-
zation table.’’ Press the ‘‘submit’’ button. The system will write
the query result into a file ‘‘downloadxxxxxxxx.txt’’ and put it in
the ‘‘Search Results’’ section.

3. Save the result file into a local directory and use script: run_
extract PLOCFromYeastGFP to extract the ORFs and their
localizations into a file and use script: run_combinePLOCs to
combine the results from both TRIPLES and Yeast GFP into
a single file ready for use by the system.

2.2.2. Preparing

Protein Families

The protein family is considered as another filter for improving the
accuracy of the predicted TRIs. We hypothesize that a predicted
transcription factor should share protein domains with its source
transcription factor. At present, all protein families are compiled
from TRANFAC (12) (Note 22), using the following steps:
1. Go to http://www.gene-regulation.com/cgi-bin/pub/

databases/transfac/search.cgi?.
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2. On this page, click on the ‘‘Class’’ button. The new page for
searching the Class table will appear. Input a wildcard (*) in
the ‘‘Search term’’ text field. Select ‘‘Class (CL)’’ as the field to
search in the table, and ‘‘100’’ as number of hits per page.
Then, click the ‘‘Submit’’ button. The new page of protein
classes will appear.

3. Save this page into the local directory as a mapping file
between class accession numbers and their descriptions.
Then, click on each accession number in this page to save as
a file on a local directory. These saved files will be used by
the prediction method for filtering the predicted TRIs.
A predicted TRI will be filtered out if its TF has no sharing
of any protein families with the source TF (Notes 23, 24).

2.3. Finding Similarity

Among Protein

Sequences

As we use homology-based approaches for TRI prediction, the
determination of similarity among protein sequences is an essential
step. In the following section, we describe the preparation of
protein sequences and the use of alignment methods for finding
sequence similarity.

2.3.1. Preparing Protein

Sequences

We compile protein sequences for a specific organism from the
Bioverse (3), using the following steps:
1. Prepare a text file that lists the names of the organisms

(one per line), which will be queried for all protein sequences.

2. Use script: run_getMoleculeSeqsViaRPC to retrieve the
protein sequences for the organisms listed in the prepared
text file in Step 1 from the Bioverse via XML RPC server (see
Chapter 22) (Note 25).

2.3.2. Finding Similarity

Among Protein Sequences

Similarities between protein sequences can be determined using
several alternative alignment methods. We summarize each
method and discuss their effect on the results.

2.3.2.1. Alignment

Methods

1. BL2SEQ (64) is a BLAST-based tool for aligning two pro-
tein or nucleotide sequences that are presumably known to be
homologous. It utilizes the BLAST (Note 26) engine (65)
for local alignment. The main purpose of BL2SEQ is to
compare the similarity between two sequences and reduce
the processing time of using the standard BLAST program;
BL2SEQ is the fastest, but least sensitive, method compared
with the other alignment methods described here.

2. PSI-BLAST (Note 27) (Position-specific iterative BLAST)
(66) is a feature of BLAST 2.0. It improves the sensitivity of
protein–protein BLAST (BLASTP) using a position-specific
scoring matrix (PSSM) constructed from a multiple sequence
alignment of the best hits in each of the most recent iteration,
such that it refines the PSSM over sequential iterations. Each
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position in the PSSM will contain varied scores according to
the conservation of the position. A position that is highly
conserved will get a higher score. PSI-BLAST is much more
sensitive than the standard BLAST program in capturing the
distant evolutionary relationships or weak relationships
between protein sequences.

3. SSearch implements the Smith-Waterman algorithm (67, 68)
for local sequence alignment. Its main purpose is to avoid
misalignment due to high noise levels in the low similarity
regions of the distantly related sequences. Hence, it ignores
all these regions and focuses only on regions that have highly
conserved signals with positive scores. The Smith-Waterman
algorithm guarantees optimal local alignment with the trade-
off of moderately demanding computing resources. Hence, it
is too slow for searching a large genomic database such as
GenBank.

4. ClustalW (69) is a progressive global multiple alignment
method that improves the sensitivity of highly divergent
sequence alignment. It incorporates (1) an individual weight
for each sequence, (2) varied amino acid substitutionmatrices
at different stages of the alignment, (3) residue-specific gap
penalties, and (4) position-specific gap penalties. ClustalW
consists of three main steps: (1) performing pairwise align-
ments for all pairs of sequences in order to generate the
distance matrix, (2) building a guide tree from the calculated
distance matrix, and (3) carrying out a multiple alignment
guided by the tree.
In our benchmarking process, we search for similar protein

sequences of a source transcription factor (TF) or a source tran-
scription factor target (TFT) in a target organism using PSI-
BLAST. Then, we use ClustalW to create multiple alignments of
the source protein sequence and the similar protein sequences
found with PSI-BLAST.

2.3.2.2. Similarity

Assessment

BLASTP and PSI-BLAST assess the similarity between query and
protein sequences in a database by creating a bit score, an E value
(expectation value), and match types with identities, positives, and
gaps. The ‘‘bit score’’ is the normalized raw score (Note 28)
according to the statistical variables defined in the scoring system.
This score allows the comparison between different alignments
with different scoring matrices. The ‘‘E value’’ is the probability
that the similarity found in this alignment might happen by
chance, with a lower E value corresponding to a more significant
score. The ‘‘identity’’ is the ratio of the number of identical
residues over the total number of aligned residues and gaps
between a query and a target protein sequence. The ‘‘positive’’ is
the ratio of the number of identical plus the non-identical but
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conserved residues (represented by a minus sign in the alignment
section of the blast result) over the total number of aligned resi-
dues and gaps between a query and a target protein sequence. The
‘‘gap’’ is the number of gaps (represented by a dash symbol), either
in the query or in the target protein sequence, over the total
number of aligned residues and gaps between a query and a target
protein sequence.

SSearch assesses the similarity between two sequences via the
Z-score, Smith-Waterman score, E() value, percentage identity,
and percentage similarity. The Smith-Waterman score is calculated
from a scoring matrix that includes the match and mismatch
scores, a gap creation penalty, and a gap extension penalty. The
Z-score is a normalized score calculated from a linear regression
performed on the natural log of the sequence length of the search
set. SSearch uses the distribution of Z-scores to estimate the
expected number of sequences (represented by E() value) pro-
duced by chance with equal or greater Z-score than that attained
from the search. The greater the Z-score, the lower the E() value.
The percentage identity and percentage similarity represent the
number of identical (represented by two vertical dots in the align-
ment section of the SSearch result) and the number of conserved
but not identical (represented by a single dot) residues over the
number of overlapping amino acids, respectively.

While higher scores and lower E values imply a better hit
(such that two sequences are significantly similar), these values
are calculated based on local alignment. Likewise, the percentage
identity and percentage similarity are calculated only from aligned
segments. Hence, in the case of two sequences with distant evolu-
tionary relationships or weak relationships, these values are not
directly representative of the similarity between them. Therefore,
in our benchmarking, we assess the similarity between two
sequences using the following steps:
1. For each protein (either TF or TFT) in the test set, we use

PSI-BLAST to (i) find its top hits from all other proteins in
the test set, and (ii) find its top hits from proteins in the
Uniprot (again, we need to handle name mapping from the
Uniprot protein identifier to the protein ID in the Bioverse),
and then (iii) put these two sets of protein sequences into a file
(including the query protein sequence). The number of files
will be equal to the number of proteins in the test set (all
distinct TFs and TFTs).

2. We use ClustalW to create multiple alignments for the set of
sequences in each file. Based on the global multiple alignment
results, we assess the similarity between the query protein
sequences to every other hit sequence in the resulting file, as
the number of identical residues over the total number of
residues of the hit sequence. We call this ratio the fraction
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identity (FI). Identical protein sequences will have FI = 1.0,
while the FI between two proteins with no similar sequences
is equal to 0.0.

2.4. Predicting TRIs To predict TRIs, we developed a Python script following the
homology-based approach described in the introduction. This
code implements the following steps (as shown in Fig. 6.3).
1. For each source experimental TRI compiled in Section 2.1,

find the orthologous proteins TFx’ and TFTy’ of TF and TFT
in a target organism, from the similarity values (i.e., ITF-TFx’
and ITFT-TFTy’ in Fig. 6.3) generated in Section 2.3. The
numbers of orthologous proteins are limited by the cutoffs of
similarity values (i.e., E-values, bit score, Z-scores, percentage
identity, percentage similarity; with each varied according to
the alignment methods). The predicted TRIs stem from all
combinations of homologous TFx’ and TFTy’ in the target
organism. Each is assigned a similarity of interaction
ITFx’!TFTy’, where

ITFx0!TFTy0 ¼ sqrtðITFÿTFx0�ITFTÿTFTy0Þ

Fig. 6.3. Predicting TRIs.
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The following steps are optionally used for improving the
accuracy of TRI prediction.
1. Filter out the predicted TRIs for which functional annotation

does not include ‘‘transcription factor.’’ Note that the
annotation of a predicted TF (TFx’) is queried from XML
RPC server in the Bioverse.

2. Filter out the predicted TRIs for which an upstream region
(prepared in Section 2.1.2) of their TFTs is not found
with any binding sites and binding sequences (prepared in
Section 2.1.1) of the TF of source experimental TRI
(prepared in Section 2.1.1).

3. Filter out the predicted TRIs for which the TF and TFT do
not share any protein localization (prepare in Section 2.2.1).

4. Filter out the predicted TRIs for which the protein families
(prepared in Section 2.2.2) of its TF and of the TF of the
source experimental TRI do not overlap.

2.5. Benchmarking One of the important issues for a prediction method is its accuracy
and coverage. In this section, we describe a design experiment for
measuring accuracy and coverage for this prediction method.

2.5.1. TP and Test Set Accuracy and coverage are defined as follows.

Accuracyx ¼ A � 100=ðA þ BÞ

Coveragex ¼ A � 100=jTP j

for which:
x ¼ a similarity value cutoff of E-values, Z-scores, percentage
identity, or fraction identity used for discarding the predicted
TRIs.

A ¼ the number of predicted TRIs in the true positive set (TP) at
cutoff x.

B ¼ the number of predicted TRIs not in TP at cutoff x.

|TP| ¼ the number of source experimental TRIs in TP.

The true positive set (TP) of a target organism contains all experi-
mental TRIs of the organism. If TRIs in the true positive set
contain N distinct transcription factors (TFs) and M distinct
transcription factor targets (TFTs), the test set will contain N x
M TRIs, which result from all-against-all combinations between
TFs and TFTs in the TP (Note 29). We define accuracy as the
fraction of TRIs predicted by the system that are in TP out of all
the predicted TRIs (either in TP or not in TP) at a specific cutoff.
We define the coverage as the fraction of TRIs predicted by the
system that are in TP at a specific cutoff over all TRIs in TP.Higher
FI threshold cutoffs correspond to higher accuracy and lower
coverage.
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In general, if the system is optimized, the cross-point between
the accuracy and the coverage plots represents an appropriate
cutoff for the system to include or exclude predicted TRIs.

2.5.2. Measuring Accuracy

and Coverage

To benchmark the predicted TRIs, we measure the accuracy and
coverage of the predicted TRIs at specific cutoffs, we use the script:
run_regulogBenchmarking_<organism>_sprot, where organism
could be human, mouse, rat, yeast, and fly. This script calls our
Python code that implements the following steps:

1. For each TRI in the test set, find the source experimental
TRIs that give the TRI from the test set with the highest
geometric mean of the FI product (Note 30). Assign this
source experimental TRI and the geometric mean of the FI
product to the TRI from the test set.

2. For each FI threshold cutoff ranging from 0.0 to 0.95, count
the number of TRIs in the test set that are in TP and not in
TP, and the FIs between the source TF and target TF and the
source TFT and target TFTs at or above the cutoff.

3. Calculate the accuracy and coverage for each cutoff using the
results from Step 2 and write the results into output files.
We use the above code to benchmark the accuracy and

coverage of predicted TRIs for five organisms: human, mouse,
rat, fly, and yeast. Table 6.2 shows the numbers of pairs in
the TP, TFs in TP, TFTs in TP, and TRIs in the test set of the
five organisms. The source experimental TRIs came from the
combination of all TRIs in TP from these organisms plus the
experimental TRIs of E. coli and B. subtilis that had protein
IDs in the Bioverse. For the benchmarking, we exclude TRIs
in TP of the target organism from the source experimental
TRIs. To obtain numbers for Table 6.2 and generate the test

Table 6.2

Numbers of TP, TFs in TP, TFTs in TP, and TRIs in the test set

of human, mouse, rat, fly, and yeast used for benchmarking

Organisms TP TFs in

TP

TFTs in

TP

TRIs in the test set

(TFs in TP � TFTs in

TP)

S. cerevisiae 136 38 104 3,952

D. melanogaster 171 72 65 4,680

M. musculus 309 109 159 17,331

R. norvegicus 46 18 36 648

H. sapiens 900 118 553 65,254
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sets for the benchmarking, we use the script: run_generate-
TestsetForBenchmarking. Figure 6.4 shows the accuracy and
coverage without any filtering for the test sets of human,
mouse, rat, fly, and yeast. In general, the cross-point between
the accuracy and coverage lines could be an appropriate cutoff.
In this figure, the cross-points of the plots vary according to
the available TRIs in TP of the target organisms.

To measure the errors of the method, we generate new test
sets comprising randomly selected sets of 80% of the TRIs in TP.
We repeat this benchmarking process 50 times. Figure 6.5 shows
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Fig. 6.4. Accuracy and coverage without any filtering for the test sets of yeast, fly, mouse, rat, and human.
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the mean accuracy without any filters and the standard deviations
below and above the mean at each FI threshold. Results from
human, mouse, and yeast do not vary substantially among 50
tries. The method does not work well with fly data sets due to a
low number of significant homologs within the available source
experimental TRIs. It is likely that this also explains the results
from fly in Fig. 6.4. The high standard deviations in the case of
rat indicate heterogeneity for the rat TP. As we do not have a
complete set of TRIs in TP for any target organism, the accuracy
and coverage of predictions can only be evaluated as minimum
accuracy and coverage.

2.5.3. Correctness of

Benchmarking Method

We perform a sanity check to measure the correctness of the
benchmarking method by including TRIs in the TP of the
target organism as part of the source experimental TRIs and
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Fig. 6.5. Accuracy with error bars of the TRI prediction method without any filtering for the test sets of yeast, fly, mouse,

rat, and human. Data point represents the mean of 50 bootstrapped data sets (randomly selected 80% of TRIs in TP) and

error bars indicate the standard deviations above and below the mean.
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calculate the accuracy and coverage using high threshold cut-
offs ranging from 0.95 to 1.0. If the method is correct, then
the predicted TRIs in TP should be the same as their source
experimental TRIs and both accuracy and coverage will be
100%.

In the case of mouse TRI prediction, there is one predicted
TRI (SP1!TTF-1) that is not a TRI in TP at the FI threshold
cutoff >¼ 0.95. This TRI is transferred from the SP1!TTF-1 in
the source experimental TRIs of human. While this TRI is not in
the source experimental TRIs of mouse, it is highly likely to be a
real but not yet experimentally validated TRI.

In case of human TRI prediction, there are two predicted TRIs
(ATF-2!HIST3H2A and HOXA5!HOXA5) not in the human
TP at the FI threshold cutoff>¼ 0.95. These TRIs are transferred
from the ATF-2 ! HIST1H2AC and the HOXA5!HOXA5 in
the source experimental TRIs of human and mouse, respectively.
HIST1H2AC is transferred to HIST3H2A with the very high
cutoff value, as they are isoforms, but at the FI threshold cutoff
>¼ 0.98, only ATF-2!HIST3H2A remains (Note 31). While
HOXA5!HOXA5 is not in the source experimental TRIs of
human, it is also likely to be a real but not yet experimentally
validated TRI.

The predicted TRI of yeast (ARS!ENO1), which is not in TP
at the FI threshold>¼ 0.95, is transferred from the ARS!ENO2
in the source experimental TRIs of yeast, where ENO2 and ENO1
are isoforms.

Overall, the results of our sanity check (shown in Table 6.3)
for the five organisms confirm that the method is correct.

2.5.4. Effects of Filters Figure 6.6 shows how different filters affect the accuracy of TRI
prediction (Note 32). Judging from our results, the use of binding
sites for filtering predictions improves the accuracy of TRI predic-
tion for all organisms (except fly, due to the limited number of
source experimental TRIs) (Notes 33, 34). The use of the func-
tional annotation of ‘‘transcription factor’’ from the Bioverse as a
filter slightly improves the prediction accuracy for all organisms
except human, which might be caused by too narrow a search with
the Bioverse options limited to ‘‘transcription factor’’ or unavail-
able. In the case of yeast, the use of protein localization as a filter
slightly improves the accuracy of prediction at low-to-medium FI
threshold cutoffs.Table 6.4 shows the numbers of predicted TRIs
of different filters for the five target organisms at the FI threshold
cutoff >¼ 0.3.

We investigate how protein families relate to the pre-
dicted TRIs by counting the number of TRIs for which TFs
are sharing or not sharing protein families with their corre-
sponding source TFs. Table 6.5 lists the counting results for
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Table 6.3

Results of the sanity checks for human, mouse, rat, fly, and yeast

FI threshold TRIs in TPs TRIs not in TPs % accuracy % coverage

D. melanogaster 0.95 171 0 100 100

0.96 171 0 100 100

0.97 171 0 100 100

0.98 171 0 100 100

0.99 171 0 100 100

1 171 0 100 100

H. sapiens 0.95 900 2 99.778 100

0.96 900 2 99.778 100

0.97 900 2 99.778 100

0.98 900 1 99.889 100

0.99 900 1 99.889 100

1 900 0 100 100

M. musculus 0.95 309 1 99.677 100

0.96 309 0 100 100

0.97 309 0 100 100

0.98 309 0 100 100

0.99 309 0 100 100

1 309 0 100 100

R. norvegicus 0.95 46 0 100 100

0.96 46 0 100 100

0.97 46 0 100 100

0.98 46 0 100 100

0.99 46 0 100 100

1 46 0 100 100

S. cerevisiae 0.95 136 1 99.27 100

0.96 136 0 100 100

0.97 136 0 100 100

0.98 136 0 100 100

0.99 136 0 100 100

1 136 0 100 100
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the five organisms at the FI threshold cutoff >¼ 0.3. The
numbers of predicted TRIs that display sharing are the lar-
gest compared to the numbers of predicted TRIs not sharing
or not having protein family information, for all FI threshold
cutoffs for all organisms except yeast (data not shown here).
In case of yeast, most of the predicted TRIs are the TRIs for
which TFs or their source TFs do not have protein family
information.
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Fig. 6.6. Accuracy with no filters, accuracy with TF function filter, accuracy with binding site filter, accuracy with

localization filter (in yeast only), accuracy with all filters for the test sets of yeast, fly, mouse, rat, and human.
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3. Notes

1. Orthologs are defined as best-matching homologs between a
source and a target organism.

2. Similarly, an interolog is defined as the pair of interacting
proteins A  ! B in a source organism and its orthologous
proteins A’ !B’ in a target organism (29).

Table 6.4

Numbers of predicted TRIs (in TP, not in TP) with different filters at the FI threshold

cutoff>= 0.3 of yeast, fly, mouse, rat, and human from the benchmarking process

Organisms No filter W/TF function filter W/binding site filter W/all filters

S. cerevisiae 18, 111 11, 58 11, 7 1, 3

D. melanogaster 0, 1 0, 1 0, 0 0, 0

M. musculus 21, 126 13, 73 7, 44 5, 22

R. norvegicus 6, 5 6, 3 2, 0 2, 0

H. sapiens 13, 117 7, 70 1,9 1,7

Table 6.5

Numbers of predicted TRIs of TP and not in TP for which TFs (1) share protein

families with their corresponding source TFs, (2) have no overlapped protein

families with their source TFs, and (3) have no information of protein families, with

no filters, at the FI threshold cutoff >= 0.3

Organisms

TRIs

in TP

TRIs in

TP,

sharing

protein

family

TRIs in

TP, no

sharing

protein

family

TRIs in

TP, no

protein

family

info.

TRIs

not

in TP

TRIs not

in TP,

sharing

protein

family

TRIs not

in TP, no

sharing

protein

family

TRIs

not in

TP, no

protein

family

info.

S. cerevisiae 18 3 0 15 111 32 0 79

D. melanogaster 0 0 0 0 1 0 0 1

M. musculus 21 15 3 3 126 93 13 20

R. norvegicus 6 5 0 1 5 4 0 1

H. sapiens 13 10 0 3 117 100 3 14
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3. The sources of experimental TRIs are limited, and the ways
to access and gather them are varied. Among our source
databases, RegulonDB is the only database that provides a
way to download the TF to gene interactions in bulk. In the
case of TRANSFAC1, we needed to write a script using the
urllibmodule in Python to fetch data from the http server of
TRANFAC1. In case of DBTBS, we resorted to a personal
communication requesting the experimental TRIs from the
authors.

4. The formats of the experimental TRIs differ from source
to source. For instance, TRANSFAC1 provides the
experimental TRIs of eukaryotes via the records of tran-
scription factors in html files, where each record will
contain various information of the transcription factor
and its regulating genes. DBTBS provides all experimental
TRIs of B. subtilis in a single xml file. To handle these
various formats, we wrote code for extracting the experi-
mental TRIs from each specific source as described in
Section 2.1.1.

5. We encountered the same problems for gathering and pre-
paring the binding sites and binding sequences. The binding
sites in TRANSFAC1 came as a part of the transcription
factor records and linked to their own records of specific
binding sequences. Hence, we wrote code to extract the
binding site accession numbers. Then we fetched the binding
site records from the TRANFAC1 http server and parsed
these records for the binding sequences. In case of DBTBS,
the binding sites and binding sequences appeared in specific
xml tags. Hence, we developed code to parse and extract
them. As RegulonDB provides bulk download of the TF
binding sites, we only needed to edit the format of the down-
loaded file.

6. Toextenda setof experimentalTRIs for anorganismfromdiffer-
ent sources, we use the script: run_appendTRIs_<organism>,
where examples of organisms are ‘‘caenorhabditis_ elegans,’’
‘‘homo_sapiens,’’ and ‘‘saccharomyces_cerevisiae.’’ This script
calls a code that appends additional TRIs compiled from other
sources listed in an input file (e.g., ./inputs/TRIs/caenorhabdi-
tis_elegans_tris_fileList.txt,forC.elegans)totheavailableTRIfile.
For instance, the run_appendTRIs_caenorhabditis_elegans
appends the TRIs compiled fromWormBase (in file ../inputs/
TRIs/WormBaseTRIs.csv) to the compiled TRIs from
TRANSFAC.

7. BIND becomes a component of BOND (Biomolecular
Object Network Databank), which contains not only BIND
but also GenBank data and related tools.
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8. We get a PubMed identifier for a paper by searching the paper
at Entrez PubMed http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?DB=pubmed.

9. The lengths of the upstream regions are specific and limited
for different sources. For instance, the UCSCGenome Brow-
ser provides the upstream regions of human, rat, mouse, and
fly with lengths 1,000, 2,000, and 5,000 bps whereas SGD
provides only 1,000 bps upstream regions. In the case of
prokaryotes, we extracted the upstream regions of each
organism from their complete genome sequences, with the
length of 500 bps (Notes 35, 36).

10. In this work, we do not take the directions (i.e., forward,
reverse) of the strand of the upstream regions into account.
Also, we do not consider the possible binding sites at the
downstream region. At present, we are interested only in
predicting the transcriptional regulatory interactions for
which transcription factors bind to specific sequences in the
upstream regions of a target gene. Nevertheless, the overall
methods described for TRI prediction should be usable for
these extensions as these affect only the scanning of the bind-
ing sequences during the filtering process. The data prepara-
tion should be extended for the downstream regions, and the
scanning of binding sites should evaluate the reverse strand
and downstream regions.

11. In the case of S. cerevisiae, instead of getting the upstream
regions via the ftp server as described in Section 2.1.2, you
might follow the following steps:
l Go to http://www.yeastgenome.org/ (44).

l On the left side of this main page, in section ‘‘Download
Data,’’ select ‘‘Batch Download.’’ A page ‘‘SGD Batch
Download Tool’’ will appear. Specify the input chromo-
some on the right-hand side of Step 1, and then specify the
type of data that you would like to retrieve in Step 2. Under
the ‘‘Sequence data’’ section, check box ‘‘Genomic DNA +
1 kb upstream and 1 kb downstream of flanking sequence,’’
and click the submit button.

l After getting the result file for each chromosome, concate-
nate these files together for the upstream regions of all
genes in the complete genome. Then, use the same script:
run_extractUpstreamRegions_1000bp_saccharomyces_ce-
revisiae to parse, extract, and transform this file into the
upstream region file from S. cerevisiae, ready for use by the
system.

12. The upstream region files downloaded from UCSC Genome
Browser contain only the upstream regions from transcription
starts annotated separately from the coding initiation region.
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So, they are not the complete sets of upstream regions. An
alternative way to compile the upstream regions of genes in an
organism is to find the location of the genes in the complete
genome sequence and extract the sequence in front of the
genes starting from their transcription start sites as the
upstream regions.

13. In the case of H. sapiens, M. musculus, R. norvegicus, and D.
melanogaster, one might use the ftp server instead of the http
server:
l Go to ftp://hgdownload.cse.ucsc.edu/goldenPath/.

l Use the code in parentheses at the first line of a specific
genome box at http://hgdownload.cse.ucsc.edu/down-
loads.html (e.g., hg18 for human genome) to select the
directory under the ftp://hgdownload.cse.ucsc.edu/
goldenPath/. Under this directory, select ‘‘bigZips’’
directory and save files upstreamxxx.zip into a local
directory. The xxx represents the number of base pairs
of each upstream region. Use our script: run_extract
UpstreamRegions_1000 bp_homo_sapiens to parse,
extract, and transform the saved files into the format
ready for use by the system.

14. TIGR uses the results from IRGSP. Hence, the upstream
regions of rice downloaded from TIGR are of the cultivar
Nipponbare of Oryza sativa L. ssp. japonica (57). The first
draft sequence of O. sativa L. ssp. indica was also available
and published in the same journal (70).

15. The naming systems of the upstream regions of organ-
isms are different from source to source. We needed to
find the appropriate mapping from a specific ID system
to the protein IDs in the Bioverse. The complexity in
finding the mapping varied according to different
sources. For instance, the upstream regions of eukaryotes
(i.e., human, mouse, rat) downloaded from the UCSC
Genome Browser were identified by RefSeq accession
numbers for nucleotide sequences. However, we only
had the mapping of NCBI GenBank Identifiers (GIs)
to protein IDs in the Bioverse for these organisms.
Hence, we needed to find the mapping from these
RefSeq numbers to the GIs. On the other hand, the
upstream regions of yeast, fly, worm, and Arabidopsis
had been annotated by their specific ID systems already
in the Bioverse. Hence, finding the mapping for these
organisms was less complex. In case of rice, as TIGR
uses TIGR_LOCUS as the main identifier for the rice
genome to refer to the upstream regions, genes, and
proteins, we needed to find the mapping from TIGR_-
LOCUS IDs to protein IDs in the Bioverse.
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16. Several names of TFs and TFTs in the source experimental
TRIs are not mapped with any intermediate ID system.
Hence, the TRIs with these TFs and/or TFTs will be dis-
carded, such that several source TRIs are lost during the
mapping process.

17. We could improve the quality of the name mappings by
finding and adding the synonyms of the common names
from different sources to the name ID mapping file.

18. Building namemapping fromTFs, TFTs to protein IDs in the
Bioverse for H. sapiens is the most complicated. We encoun-
tered the following problems and limitations during the pro-
cess of building the name mapping:
l The naming of human genes is still not well defined. Even

though several sources of human genes with common
names are available, some of them are not updated and
some others are obsolete. Sources of common names for
H. sapiens are GenBank, the synonyms field associated with
each transcription factor information files compiled from
TRANSFAC1, OMIM (59), Entrez Genes (71), and
HUGO (58).

l Human genes are much more complex than yeast. Several
of them have the same common names but different protein
products according to different isoforms. Hence, a straight-
forward many-to-one mapping of a common name and its
synonyms to a specific intermediate ID (i.e., systematic
ORF name from SGD) and to a protein ID in the Bioverse
as in case of yeast is not always true in human.

19. Even though the name mapping could be refined with the
synonyms of common genes from different sources, in gen-
eral, these will not be complete. The better and more reliable
mapping from the common names of TF and TFT in the
experimental TRIs to protein IDs in the Bioverse uses
sequence mapping. However, this is not applicable because
this method involves protein sequences of all TFs and TFTs in
all experimental TRIs. Nevertheless, TRANSFAC1 provides
only the protein sequences of TFs but not of TFTs, while
other sources of experimental TRIs do not provide protein
sequences. To get protein sequences for these TFs and TFTs,
we return to the name mapping problem.

20. At present, we have only the protein localization of S.
cerevisiae from two public databases, as described in Sec-
tion 2.2.1. Also, in our current assumption for filtering
using protein localization, a predicted TRI will be dis-
carded if its TF and TFT do not share localization. This
assumption might be too restrictive and needs further
investigation.
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21. In addition to TRIPLES and YEAST GFP mentioned in
Section 2.2.1, we list additional public databases of experi-
mental protein localization compiled from a literature search
in Table 6.6 and sources of protein localization based on the
predictions in Table 6.7. Beside these two tables, additional
systems and programs for protein subcellular localization can
be found at http://www.molecularstation.com/protein/
bioinformatics/subcellularlocalization/.

22. Besides protein families compiled from TRANSFAC1, we list
other public databases of protein families in Table 6.8. Addi-
tional resources of protein families can be found at http://
www.proweb.org/other.html.

23. At present, we have only protein families compiled from
TRANSFAC1, as described in Section 2.2.2. Our current
filtering method using protein families will discard all predicted
TRIs for which the related TFs do not share any protein families
with their corresponding TFs from source TRIs. Hence, with
protein families compiled only fromTRANSFAC1, the filtering
might discard the predicted TRIs that are real.

24. In addition to using protein families for filtering the predicted
TRIs as described in Section 2.2.2, we might utilize the
combination of protein domains and domain architectures
(72–75) in finding the similarity between two protein
sequences. Also, instead of assigning the same weights for all
overlapped locations between two aligned protein sequences,

Table 6.6

Public databases of protein subcellular localization from experiments

Database Description URL

UniProtKB/Swiss-
Prot (76)

An annotated protein
sequence database

http://www.ebi.ac.uk/swissprot/
FTP/ftp.html

Comprehensive Yeast
Genome Database
(CYGD) (78)

MIPs Saccharomyces cerevisiae

genome database
http://mips.gsf.de/genre/proj/

yeast/index.jsp

MitoP2 (79) A database for mitochondria-
related genes, proteins, and
diseases

http://www.mitop.de:8080/
mitop2/

LOCATE (80) A curated database of membrane,
organization and subcellular
localization mouse proteins
of RIKEN FANTOM3

http://locate.imb.uq.edu.au/
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Table 6.7

Sources of protein subcellular localization from prediction

Source Description URL

PSORT (81) Predicting protein subcellular
localization based on stored rules and
prediction of sorting signals

http://psort.hgc.jp/

Yeast Protein
Localization
Server (82)

Predicting subcellular location of
proteins in yeast using Bayesian
formalism

http://bioinfo.mbb.yale.edu/
genome/localize/

LOC3d (83) A database of predicted subcellular
localization for eukaryotic PDB chains

http://cubic.bioc.columbia.edu/db/
LOC3d/

TargetP1.1(84) Predicting subcellular localization of
protein in eukaryotes based on the
predicted presence of N-terminal pre-
sequences, chloroplast transit peptide
(cTP), mitochondrial targeting
peptide (mTP), or secretory pathway
signal peptide (SP)

http://www.cbs.dtu.dk/services/
TargetP/

SubLoc v1.0
(85)

A system for predicting protein
subcellular localization using Support
Vector Machine (SVM)

http://www.bioinfo.tsinghua.edu.cn/
SubLoc/

Table 6.8

Public databases of protein domains and families

Database Description URL

InterPro (86, 87) A resource of protein families,
domains and functional sites,
integrated from other databases
such as Pfam, PROSITE,
PRINTS, etc.

http://www.ebi.ac.uk/interpro/

Pfam (88) A database of curated protein domains
and families based on multiple
sequence alignments and hidden
Markov models

http://www.sanger.ac.uk/Software/
Pfam/

PROSITE (89) A database of protein families and
domains that consists of biologically
significant sites, patterns, and
profiles used for identifying a family
for a new protein

http://www.expasy.org/prosite/

(continued)

134 Wichadakul, McDermott, and Samudrala



Table 6.8 (continued)

Database Description URL

ProDom (90) A database of protein domain families
automatically generated from Swiss-
Prot and TrEMBL databases

http://prodom.prabi.fr/prodom/
current/html/home.php

BLOCKS (91,

92)

A database of aligned ungapped
segments derived from the most
highly conserved regions in groups
of proteins

http://blocks.fhcrc.org/

PRINTS (93) A collection of protein fingerprints,
where each is a group of conserved
motifs used to classify a protein
family

http://www.bioinf.man.ac.uk/
dbbrowser/PRINTS/

TIGRFAMs (94) A collection of curated protein
families that consists of various
models including, multiple
sequence alignments, hidden
Markov models (HMMs), Gene
Ontology (GO) assignments, and
literature references, for instance.

http://www.tigr.org/TIGRFAMs/

SYSTERS (95) A database of protein families based on
graph-based algorithms for protein
sequences partitioning, clustering,
and searching

http://systers.molgen.mpg.de/

SCOP (96, 97) A database of proteins ordered by
structural classification; protein
domains are classified into families,
superfamilies, folds, and classes

http://scop.mrc-lmb.cam.ac.uk/scop/

SMART (98) A web-based tool and database, which
allows the identification of signaling
domains, the genetically mobile
domains, and the analysis of domain
architectures

http://smart.embl-heidelberg.de/

SUPERFAMILY
(99, 100)

A database of hidden Markov models
(HMMs) of known structures with
protein domain classification based
on SCOP

http://supfam.org/SUPERFAMILY/

CATH (101) A database of protein domain
structures, which categorizes
proteins at four levels: Class (C),
Architecture (A), Topology (T), and
Homologous superfamily (H)

http://www.cathdb.info/

(continued)
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we need to give more weight for the locations that are con-
sidered protein domains. This higher similarity specificity
should help to improve the accuracy of prediction.

25. Instead of getting protein sequences from the Bioverse via an
XMLRPC server, we might get protein sequences from other
sources such as protein database at NCBI, UniProt (the uni-
versal protein resource) (76), TAIR for A. thaliana, TIGR
Rice Genome Annotation for O. sativa, WormBase for C.
elegans, FlyBase for D. melanogaster, and SGD for S.
cerevisiae.

26. For BLAST practical usage, see BLAST tutorial at http://
www.ncbi.nlm.nih.gov/Education/BLASTinfo/tut1.html
for additional information.

27. For PSI-BLAST practical usage, see PSI-BLAST tutorial at
http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/
psi1.html for additional information.

28. Raw score, ‘‘S’’, is calculated as the sum of the substitution
and gap scores (source: http://www.ncbi.nlm.nih.gov/Edu-
cation/BLASTinfo/Blast_output.html).

29. We define accuracy as the fraction of TRIs predicted by the
system that are in true positive set (TP) over the total predicted
TRIs at a specific cutoff. Aswe did not have a set of false positives
(FP), we define the test set of the TRIs that includes all combi-
nations of individual TF to individual TFTs in the TP set. This
means that if we have 121 TRIs in the TP which consists of 49

Table 6.8 (continued)

Database Description URL

Gene3D (102) A database of combined structures,
functions, and evolutions of
proteins, with HMMs based on
CATH domain families, for
structural annotation

http://gene3d.biochem.ucl.ac.uk/
Gene3D/

PIRSF (103) A super family classification system
based on the relationships of protein
evolutions

http://pir.georgetown.edu/pirsf/

PANTHER
(104, 105)

A database of protein families,
subfamilies, functions, pathways,
and sequence and function
evolutions

http://www.pantherdb.org/

CDD (106) A conserved domain database at NCBI
for protein classification

http://130.14.29.110/Structure/
cdd/cdd.shtml
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TFs and 83 TFTs, then the test set will consist of 49�83 =
4,067TRIs. Note that it is possible that someTRIs in the 4,067
that are not in the TP might be real. Hence, what we have for
accuracy calculation isminimum coverage. To improve accuracy
and coverage, we need to find a gold standard of TP for which
TRIs are known with high confidence so that any other TRI is
not possible among the set of their TFs and TFTs.

30. The FI product is the multiplication of fraction identity (FI)
between a source TF and a target TF and a source TFT to a
target TFT. The fraction identity is the number of identical
amino acids that are overlapped between the aligned source
and the target TFs (or source and target TFTs) over the total
number of amino acids of the target TF (or target TFT).

31. The predicted TRIs that have high similarity of interaction
but are not in the TP might come from isoforms. To clean up
accuracy and coverage at the high similarity of interactions for
benchmarking, we omit the predicted TRIs resulting from the
isoforms of target TF and TFT.

32. The available experimental TRIs are incomplete. Even
though we tried to gather the experimental TRIs of each
source organism from different sources such as public data-
bases and supplemental data from the literature, there is no
way to compile the complete set of true positives for a target
organism. This resulted in lower accuracy and coverage in
benchmarking the TRI predictions for almost all target
organisms. This is a limitation of the available data set. In
fact, predictions that are not in our TP might be real TRIs.

To alleviate this limitation, we attempt to filter out the
predicted TRIs using additional data sets such as binding
sites, binding sequences, protein localization, protein
families, and functional annotation. Also, several predicted
TRIs are the same among organisms (Note 37). Even though
they are not yet verified by experiments, nor are they in the
TPs, we consider them as real interactions that should be
removed from the set of predicted TRIs not in the TP.

33. The available binding sites and binding sequences are incom-
plete. We cannot determine a predicted TRI as false even
though the upstream region of the TFT of the predicted TRI
does not have the binding sites and binding sequences of the
TF of its source experimental TRI. It is possible that the TF
might have alternative sites and sequences that are not yet
studied. Hence, we mainly use the available binding sites and
binding sequences for improving the confidence of prediction.

34. The location of binding sites and their sequences do not need
to be exactly the same between the TF of the source experi-
mental TRI and the TF of a predicted TRI. Hence, we relaxed
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this restriction using 80% matching for scanning the binding
sequences with the varied lengths of upstream regions of
target TFT in the predicted TRI. Note that the scanning of
binding sequences of B. subtilis needed a special treatment,
such that some of its binding sequences required exact match-
ing while others could be relaxed.

35. We could change this length of upstream regions and rerun-
ning the extraction.

36. RegulonDB also provides promoters of E. coli K-12. How-
ever, we have not integrated these promoters as part of the
extracted upstream regions of E. coli.

37. A predicted TRI in a target organism is considered the same as
a source experimental TRI if its TF’ and TFT’ have the same
names as of the TF and TFT of the source experimental TRI.

38. Databases at NCBI such as Nucleotide, Protein have been
providing XML as an alternative formats for their download-
able data.

4. Conclusions

Data preparation and integration is one of the major tasks in our
prediction of TRIs by a homology-based approach. As data from
different sources have different formats, we need to handle them
differently. In this chapter, we provide a set of Python programs
and shell scripts that help to retrieve and manipulate data from
various sources. Definitely, these make this process easier. How-
ever, public data sets are being released every day, and they might
have rearrangements of data formats and identifiers. Hence, in the
long term it would be better if various sources provide their data
sets in a standard data exchange format like XML (Note 38) and/
or provide standard interfaces (e.g., SOAP, RPC, Web Services)
for remote programs to be able to automatically interconnect and
work together with each other. In terms of name mapping, while
different sources might have their own identification systems, it
would be much easier for users if they also provided a mapping
from their ID to a standard ID. Hence, while what we presented in
this chapter seems straightforward, it becomes very complicated in
terms of bookkeeping, and this is very rarely talked about explicitly
in papers that describe results like these.

The compiled experimental TRIs and the predicted TRIs can
be integrated with protein–protein interactions (PPIs) and other
data types such as gene expression for investigating specific path-
ways. Figure 6.7 shows an example of the integrated network
between TRIs and PPIs for investigating the regulation of CBF1
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to MET28 (CBF1!MET28) and their related genes, proteins,
and interactions, in yeast cell cycle phase S. Figure 6.7a, b and c
represent the integrated networks with different settings and
filtered by differentially expressed genes downloaded from
Luscombe et al. (77).
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