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Abstract

The identification of proton contacts from NOE spectra remains the major bottleneck in NMR protein
structure calculations. We describe an automated assignment-free system for deriving proton contact
probabilities from NOESY peak lists that can be viewed as a quantitative extension of manual assignment
techniques. Rather than assigning contacts to NOESY crosspeaks, a rigorous Bayesian methodology is
used to transform initial proton contact probabilities derived from a set of 2992 protein structures into
posterior probabilities using the observed crosspeaks as evidence. Given a target protein, the Bayesian
approach is used to derive probabilities for all possible proton contacts. We evaluated the accuracy of this
approach at predicting proton contacts on 60 15N separated NOESY and 13C separated NOESY datasets
simulated from experimentally determined NMR structures and compared it to CYANA, an established
method for proton constraint assignment. On average, at the highest confidence level, our method accu-
rately identifies 3.16/3.17 long range contacts per residue and 12.11/12.18 interresidue proton contacts per
residue. These accuracies represent a significant increase over the performance of CYANA on the same
data set. On a difficult real dataset that is publicly available, the coverage is lower but our method retains its
advantage in accuracy over CANDID/CYANA. The algorithm is publicly available via the Protinfo NMR
webserver http://protinfo.compbio.washington.edu/protinfo_nmr.

Introduction

The traditional manual approach to NOESY
interpretation is to assign each crosspeak to one or
more proton pairs. Sequential assignments
(Wuthrich, 1986) rely upon contacts that are
known to be consistently less than 5 Å apart. Main
chain assignment strategies (Wand et al., 1991;
Bailey-Kellogg et al., 2000) use similarly conserved
contacts in secondary structure elements. For long
range contacts, initial assignments rely heavily

upon crosspeaks with chemical shifts that uniquely
identify the protons involved. Assignments are
confirmed through the presence of symmetry
peaks and through the presence of previously
identified correlated contacts, such as those
between other proton pairs belonging to the same
residue pair. Structural simulations based upon
initial assignments can be used to resolve ambi-
guities in an iterative fashion (Mumenthaler et al.,
1997; Nilges et al., 1997; Linge et al., 2001) until a
high-resolution structure is obtained. Programs
such as AUTOSTRUCTURE (Huang et al.,
2005), and CANDID (Herrmann et al., 2002)
incorporate these heuristic rules to assign NOE
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spectra and CYANA (Guntert 2004) integrates the
iterative structural refinement process with the
assignment process.

Rule-based deterministic methods are by
nature simplifications of the underlying relation-
ships. For example, sequential assignment rules
are limited to predicting the three contacts per
residue that are most highly conserved in experi-
mentally determined structures even though there
are many other proton pairs with distances that
are only slightly less conserved (see Figure 1).
However, extending the rules to predict more
contacts would decrease accuracy and rule-based
systems have to make compromises between
accuracy and coverage. In contrast, Bayesian sys-
tems accept an initial estimate of the likelihood of
any contact as input and rigorously transform it
into a posterior contact probability that takes into
account the information present in the crosspeaks
and in other contact probabilities. The probabi-
listic output can be then be converted into a
deterministic output by using a posterior proba-
bility cutoff to predict the contacts. The same high
confidence predictions made by rule-based meth-
ods can also be made by such an approach.
However, since all the inputs and all the spectral
evidence can contribute to the posterior probabil-
ity, more predictions with greater accuracy can be
obtained using a Bayesian approach.

We describe a new Bayesian approach for the
interpretation of NOESY data. We initially start
with the contact probabilities for all possible types
of proton pairs estimated from a set of 2992
structures solved by X-ray diffraction (Wang and
Dunbrack, 2003). Our approach is assignment
free: Instead of assigning each crosspeak to a
particular contact (or to a small set of contacts),
crosspeaks modify the contact probabilities of all
proton pairs that could possibly give rise to the
crosspeak. Thus, the procedure not only uses all
the proton contact probabilities in the database of
experimentally determined structures as input, but
also utilizes the crosspeak information in an opti-
mal fashion to generate final contact probabilities.
Contact probabilities are calculated for all possible
proton pairs present in the target protein, and not
just for a small subset of assigned contacts. We
demonstrate the accuracy of our approach with a
set of 60 simulated 15N separated NOESY and 13C
separated NOESY datasets, and a difficult real test
case, and compare the performance to CANDID/

CYANA. We also discuss some planned exten-
sions of the methodology to allow the use of
probabilistic chemical shift data and also allow the
iterative refinement of the contact probability
estimates using structural data.

Materials and methods

Overview of Bayesian methodology

The Bayesian approach consists of several stages
which are described in detail in the subsections
below. Briefly, we first obtain initial estimates of
contact probabilities (prior probabilities) for all
proton pairs from experimentally determined
structures. Then the crosspeaks in the spectra are
treated as evidence in a Bayesian formulation to
generate posterior probabilities using the simple
Bayesian relationship shown in (5). However,
because symmetry crosspeaks are highly correlated,
they must be treated as a unit and the Bayesian
equation is modified as shown in (10). Similarly, the
high correlation between contact probabilities
between related protons must be accounted for.
Finally, the first round of output posterior proba-
bilities is used as input for a second round of
Bayesian interpretation to take full advantage of
the increase in accuracy of the contact estimates.

Generation of prior probabilities

A set of 2992 non-redundant structures solved
using X-ray diffraction (Berman and Dunbrack,
2003) having less than 30% pairwise sequence
identity to each other were obtained using
curated lists from the culled PDB resource (Wang
et al., 2003). Missing protons were generated
using the program REDUCE (Word et al., 1999).
The protons were grouped by residue, type (re-
lated methyl protons being treated as single type),
secondary structure, and chain separation (‡5
residues apart being treated as one class) and the
distances between all pairs were enumerated. The
distances were binned using 0.5 Å intervals to
derive a distance probability distribution for each
proton pair. We then assumed that only proton
distances £5 Å are observable and calculated the
probabilities by summing the counts in the bins
for distances £5 Å and dividing by the total
number of counts for all distance bins. Initial
contact probabilities were generated for all nine

190



combinations of secondary structure states for
each protein pair. The likelihoods of the sec-
ondary structure states were then estimated using
our secondary structure prediction program
PsiCSI (Hung et al., 2003a), which predicts sec-
ondary structure from chemical shift and se-
quence with an average accuracy of nearly 90%
on a large benchmark set. These likelihoods were
used to weight the initial probabilities to generate
a final database derived prior contact probability.

Bayesian generation of posterior probabilities

Bayes theorem can be expressed as:

PðAjBÞ ¼ PðBjAÞPðAÞ
PðBÞ ð1Þ

where P(A|B) is the probability of an event A given
the observation B, P(B|A) is the likelihood of B
given A, P(A) and P(B) are the prior probabilities
of event A and observation B. Essentially, this
states that if we can narrow the set of outcomes to
those that result in the observation B, the proba-
bility of event A is increased by contraction of the
probability space as given by the ratio:

PðBjAÞ
PðBÞ ð2Þ

For NOE interpretation, event A is a proton
contact, and observation B is a crosspeak with
coordinates consistent with the chemical shifts of
the protons. We assume that the crosspeak will al-
ways form if there is a contact, so the termP(B| A) is
unity. This gives us:
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Figure 1. Comparison of the accuracy of contact predictions for 60 simulated NOESY datasets made using Protinfo NMR posterior
probabilities, database prior probabilities and CYANA confidences. For each type of contact, the accuracy is shown as a function of
the number of contacts (coverage) predicted at a particular confidence cutoff. Contacts were considered to be correctly predicted when
they were less than 5 Å apart in the source structure. Overall, our Protinfo NMR methodology is extremely accurate, with 12.17
interresidue contacts per residue predicted at 99.5% accuracy. For sequential and local contacts, the prior probabilities predict contacts
more accurately than CYANA at the highest confidences and the posterior probabilities are more accurate than CYANA regardless of
the coverage. For non-local contacts, CYANA provides greater coverage but with a broad reduction in accuracy compared to Protinfo
NMR, which peaks at 99.5% accuracy when identifying 3.17 contacts per residue.
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Pposterior ¼
Pprior

Pcrosspeak
ð3Þ

where Pposterior is the posterior probability of the
contact (the estimate of contact probability given
the crosspeak), Pprior is the prior probability (the
estimate of contact probability obtained from
the database), and Pcrosspeak is the prior estimate of
the probability of the crosspeak (the normalization
factor accounting for the restriction of probability
space). Assuming that the crosspeak arises from
contacts from at least one of the proton pairs with
consistent chemical shifts we obtain:

Pposterior ¼
Pprior

1�
Qn

i¼1
ð1� PiÞ

ð4Þ

where {Pi} is the set of prior probabilities of all the
possible contacts that could result in the cros-
speak. Equation (4) handles the idealized situa-
tion, but the crosspeak can also be a spectral
artifact. Even when this cannot be estimated, a low
value for the artifact probability prevents absolute
unity probabilities which can otherwise cause some
numerical instabilities. Thus the final equation we
use is:

Pposterior ¼
Pprior

1� ð1� PartifactÞ
Qn

i¼1
ð1� PiÞ

ð5Þ

The information present in the crosspeak is
manifested in the restriction of the contact possi-
bilities to proton pairs within a narrow range of
chemical shifts. The resulting restriction in prob-
ability space is what amplifies the signal present in
the prior probabilities to generate the posterior
probabilities.

Posterior probabilities for related crosspeaks

Generally, a proton contact will result in more
than one crosspeak, with the most common case
being that of symmetry peaks that are found ei-
ther within a single experiment or between dif-
ferent experiments. It is possible due to
differences in the magnetization transfer and
relaxation pathways that one of the symmetry
related peaks will not be observed. In this case,
the probability of a contact is multiplied by the

probability that a symmetry crosspeak will be
missing. This probability is provided by the user
or estimated from the frequency of missing
crosspeaks from conserved contacts. When both
symmetry crosspeaks are present, one can derive
two separate posterior probabilities by treating
them separately and then combine them assuming
that the observation of the crosspeaks are inde-
pendent events. However, since the observation
of symmetry pairs is highly correlated this ap-
proach is inaccurate.

A more accurate method is to treat both cros-
speaks as a single entity. For a pair of symmetry
related peaks A and B, the protons pairs are sep-
arated into three sets: pairs that could contribute
to both peaks A and B, pairs that contribute to
only peak A, and pairs that contribute to only
peak B. To calculate the Bayesian posterior
probabilities for a pair of symmetry peaks, we
need to calculate the prior probability of observing
both peaks. We first calculate the probability that
both peaks will be observed due to a contact that
would form both peaks simultaneously. This is the
denominator in Eq. (5):

1� ð1� PartifactÞ
Yn

i¼1
ð1� PiÞ ð6Þ

where {Pi} is the set of prior probabilities for
contacts that could contribute to both peaks. The
other scenario is that both peaks are formed by
separate contacts that could form peak A or peak
B, which is the product of Eqs. (7) and (8)

1� ð1� PartifactÞ
Yj

A¼1
ð1� PAÞ ð7Þ

1� ð1� PartifactÞ
Yk

B¼1
ð1� PBÞ ð8Þ

The overall probability is the probability that at
least one contact forms both peaks simultaneously
(given in Eq. (6)) plus the probability that this does
not happen (1–6) multiplied by the probability that
two separate contacts to peaks A and B form (the
product of Eqs. (7) and (8)). If we assume that the
artifact probabilities are zero, then the probability
of observing both peaks simplifies to:
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The Bayesian posterior probabilities can be
calculated as:

In the case of symmetry peaks, the signal is
further amplified by the greater restriction of
probability space since the probability of both
peaks being observed is always less or equal to the
probability of either peak being observed. In terms
of the Bayesian equations, the denominator for the
symmetry peak in Eq. (10) is always less or equal
to the denominators of the equations for the
individual peaks (given in Eq. (5)).

Posterior probabilities for correlated proton
contacts (vicinal pairs)

In our Bayesian equations, wemake the assumption
that proton contact probabilities are independent.
This is not always true. The most important
exception is that of vicinal protons (protons that
share the same heavy atom). Not only are these
contacts highly (but not absolutely) correlated but
they also tend to have similar chemical shifts and are
often involved in the interpretation of the same
crosspeaks. When this is the case, we need to treat
them as a single entity (i.e. a contact to either vicinal
proton constitutes a contact), for the purposes of the
denominator of Eq. (5). The database derived
probability that either vicinal proton is in contact
with a given proton can be calculated directly from
the observed proton contact frequencies from
experimentally determined structures. However, it
is often convenient and more accurate to treat the
proton contact probabilities separately, such as
when using structural consensus to generate priors
or when converting posterior contact probabilities
to constraints. By estimating the correlation
coefficient for vicinal proton contacts from the

observed correlation in our protein database, we
can calculate the joint probability from the indi-
vidual vicinal contact probabilities and vice versa.

Iterative refinement of posterior probabilities

The quality of the posterior probabilities obtained
is affected by the accuracy of the related priors.
Our initial estimates of contact probabilities were

based upon probabilities observed in known pro-
teins. The posterior probabilities are more accu-
rate estimates of contact probabilities than these
original database-derived probabilities since they
reflect the information present in the crosspeaks.
This is especially true for non-local prior contact
probabilities, since non-local contacts vary more
from protein to protein than local and sequential
ones. Using the more accurate posterior proba-
bilities from the first round of predictions as prior
probabilities for input into a second round of
predictions, we can increase the accuracy of the
contact predictions made using the posterior
probabilities.

Simulation of NOESY spectra

The first models of 60 NMR structures were used
to generate simulated 15N separated NOESY and
13C separated NOESY peak lists. Proton pairs less
than 5 Å apart in the structures were enumerated
and initial crosspeak lists generated from the
chemical shift assignments for these contacts.
Crosspeaks that were closer than the overlap cut-
off (0.05 ppm for protons, 0.4 ppm for heteroa-
toms) were grouped together and the new
coordinates of the overlapped crosspeak were
calculated from the average coordinates of the
group. This process was repeated until no two
crosspeaks were closer than the overlap cutoff.
This resulted in differences (up to 0.06 ppm in the
proton dimensions) between the final crosspeak
chemical shifts and the protons used to generate
the crosspeaks.

Pposterior ¼
Pprior

1þ
Qn

i¼1
ð1� PiÞ

� �

�
Qj

A¼1
ð1� PAÞ

� �

�
Qk

B¼1
ð1� PBÞ

� �

� 1

� �

�
Qj

B¼1
ð1� PBÞ

� � ð10Þ
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Determination and comparisons of accuracy

A proton contact prediction is considered correct
when the corresponding distance in the experimen-
tal structure is £5 Å. Methyl and vicinal protons
are considered as a single group and a prediction is
considered correct when the distance to any proton
of the group is £5 Å. For real datasets, a prediction
is considered correct when the contact is present in
at least 90% of the models.

For comparative evaluation of our approach
on 60 datasets, we performed simulations using
CYANA v2.1, an established tool for NOESY
assignment and structure calculation. The default
settings for the 7-cycle assignment/simulation
protocol were used. Cycles after cycle 1 use
structural ensembles to iteratively resolve ambi-
guities in the NOE assignments we compared so
the assignment confidence values were read from
the cycle1.noa file.

For comparison on a real test case we used the
dataset deposited for 1se9 in the Biological Mag-
netic Resonance Bank (BMRB) (Seavey et al.,
1991; Vinarov et al. 2004), http://www.bmrb.wis-
c.edu/data_library/timedomain/1/bmr612. Assign-
ment confidence values for CANDID (from
CYANA v1.06) were obtained from the cycle1.ass
file, and were used to obtain the results shown in
Figures 1 and 2.

Results

Accuracy evaluation and comparison to CYANA
on simulated datasets

Similar to the posterior contact probabilities gen-
erated by our Bayesian method, CYANA provides
confidences for each contact prediction. The accu-
racy of predictions made by CYANA with confi-
dence greater then a given cutoff canbe compared to
percentage of observed contacts with a posterior
contact probability greater than a given cutoff for
the Bayesian method. The results will be heavily
dependent on the cutoffs chosen. For bothmethods,
there is a tradeoff between accuracy and number of
contacts predicted (coverage) that is a function of
the cutoff confidence or probability. Plotting the
accuracy versus coverage as a function of different
confidences allows a more comprehensive compar-
ison of the methods.

Figure 1 compares the accuracy and coverage
for contact predictions made using the initial
database prior probabilities, the Protinfo NMR
Bayesian posterior probabilities, and the CYANA
assignment confidences for 60 simulated 15N
separated NOESY and 13C separated NOESY
peak lists. A comparison of predictions made using
only database information and those made using
our Bayesian approach shows that there is a sig-
nificant enrichment of signal, i.e. our approach is
effective at transforming the prior probabilities
using the information present in the peak lists.
Regardless of the accuracy of prior probabilities,
the resulting posterior probabilities are superior
predictors of proton contacts.

For sequential and local contacts, the prior
probabilities predict contacts more accurately than
CYANA at the highest confidences and the pos-
terior probabilities aremore accurate thanCYANA
regardless of the coverage. For non-local contacts,
CYANA provides greater coverage but with a
broad reduction in accuracy compared to Protinfo
NMR, which peaks at 99.5% accuracy when iden-
tifying 3.17 contacts per residue. At the same cov-
erage level, CYANA is approximately 95%
accurate.When all types of contacts are considered,
Protinfo NMR predicts 12.17 interresidue contacts
per residue at 99.5% accuracy.

Accuracy evaluation and comparison with
CANDID/CYANA on 1se9

1se9 is a 101 residue ubiquitin-fold protein
(Vinarov et al., 2004) solved in a semi-automated
manner using CYANA. It is unique in that the
time-domain data, complete peak lists and inter-
mediate assignments and structures are all publicly
available in the BMRB http://www.bmrb.wisc.
edu/data_library/timedomain/1/bmr6128. Furth-
ermore, this is a difficult case since automated
methods such as CANDID/CYANA did not
converge when used in an automated manner
(average RMSDs of 14.2 Å for CANDID/CYA-
NA v1.06 and 15.2 Å for CYANA v2.1 for
residues 10–99) and the structure was solved only
after months of manual intervention.

Figure 2 compares the accuracy and coverage
for contact predictions made for 1se9 using the
Protinfo NMR Bayesian posterior probabilities,
and the CYANA and CANDID assignment con-
fidences. Even though the absolute coverage is

194



lower, the trends observed in the accuracy-cover-
age analyses for 1se9 data are similar to those
observed for the simulated data. For identification
of sequential and local proton contacts, the Prot-
info NMR Bayesian approach identifies more
contacts with greater accuracy than CYANA and
CANDID. The improvement in local contact
prediction is significant since 1se9 is mostly a sheet
protein and lacks many of the traditional canoni-
cal helical specific local contacts. For the non-local
contacts, the Bayesian method is superior to
CANDID and is more accurate than CYANA in
the predicting contacts at high cutoffs. As was the
case with the simulated data, CYANA is able to
identify more contacts at lower confidences though
these were not accurate enough for the structures
to converge. Although the number of predictions
made is much lower, the overall accuracy of the
Bayesian method remains very high, with 359 and

520 interresidue contacts predicted at 99.7% and
97.5% accuracy. In contrast, the accuracy for
CYANA is 80% and 70% at the same coverage
levels. The retention of accuracy indicates that
noisiness of the real data is properly reflected in
the posterior probabilities so that smaller num-
bers of very accurate predictions can still be made
on ambiguous and incomplete datasets, high-
lighting an advantage of using our Bayesian
approach.

Discussion

Improvements to the Bayesian NOE
interpretation approach

Our Protinfo NMR Bayesian methodology is an
effective and accurate approach to interpreting
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Figure 2. Comparison of the accuracy of contact predictions for a real dataset (1se9) made using Protinfo NMR, CANDID and
CYANA. For each type of contact, the accuracy is shown as a function of the number of contacts (coverage) predicted at a particular
confidence cutoff. Contacts were considered to be correctly predicted when they were less than 5 Å apart in 90% of the models in the
experimental structure ensemble. Even though the number of contacts predicted on this difficult dataset is lower compared to the number
predicted for the simulated datasets, the accuracy of Protinfo NMR remains very high, with 359 and 520 interresidue contacts predicted
at 99.7% and 97.5% accuracy. In contrast, the accuracy for CYANA is 80% and 70% at the same coverage levels. The retention of
accuracy indicates that noisiness of the real data is properly reflected in the posterior probabilities so that smaller numbers of very
accurate predictions can still be made on ambiguous and incomplete datasets, highlighting an advantage of using our Bayesian approach.
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NOESY spectra and outperforms CANDID/
CYANA in accurately identifying proton contacts
at high confidence levels. Our approach, while
rigorous and accurate, still has much room for
improvement. We are refining the implementation
to take into account peak volumes, chemical shift
differences between assignments and crosspeaks
and variations in relaxation and exchange. We are
also exploring expanding the use of contact
probabilities from correlated proton contacts
similar to what is done by CYANA, JIGSAW
(Bailey-Kellogg et al., 2000), and BACUS (Gris-
haev and Llinas, 2004). We are experimenting with
this approach not only for vicinal proton pairs but
for other significant correlations, such as between
proton contacts from the same residue, and proton
contacts in canonical patterns used to identify
secondary structure. This type of inference transfer
through contact correlations allows predictions to
be made from indirect evidence when the cros-
speak information is limited due to overlap and
thus expands the ability of the Bayesian approach
to make inferences with noisy, ambiguous, or
sparse data.

Extensions and applications to aid structure
determination

Currently, our interpretation engine returns
posterior probabilities that can be converted to
constraints and contact predictions, which can be
used to aid manual assignments or to provide
more accurate input for automated assignment/
structure refinement software such as CYANA
and ARIA (Nilges et al., 1997). The greatly in-
creased number of contact predictions that can be
made and the high accuracy of predictions will be
especially useful for difficult cases.

The Bayesian framework can easily be
extended to encompass and integrate the other
stages of NMR data processing. Prior probabilities
can be derived from any source including manual
assignments and structural consensus. We are
integrating our approach with structure simulation
for iterative interpretation of NOESY peak lists
where the posterior contact probabilities are con-
verted to constraints used to generate a set of
structures. The observed proton contact frequen-
cies of the simulated structures then provide the

Table 1. Example of the conversion of prior to posterior probabilities

(A) Chemical shifts

H HN N

Peak 1.235 9.738 130.97

43 VAL QG1 1.256 – –

59 LEU HB3 1.242 – –

8 ILE H – 9.748 130.95

(B) Contact probabilities

Contact probability estimatesContact

True distance Prior Posterior

43 VAL QG1 to 8 ILE H 4.586 Å 0.038 0.748

59 LEU HB3 to 8 ILE H 7.959 Å 0.002 0.046

An example taken from a real 1H-1H 15N separated NOESY is shown. For the given peak there are two possible protons with shifts
(A) that match the aliphatic shift and one that matches the amide shift giving rise to two possible contacts consistent with the peak. Our
method uses observed contact frequencies in known proteins to derive initial prior estimates (B). Because both possible contacts are
non-local the absolute values of the prior contact probabilities are low. However, the VAL contact almost 20 times more likely than the
LEU contact. Given the evidence that there is a peak that can only be formed by these two contacts – the posterior probability of the
(correct) VAL contact becomes much higher than the initial estimate. If we had used differences between peak chemical shift between
proton shift, as an estimator as most other methods do, the incorrect LEU contact would have been favored. Probabilities do not add
up to unity because they are not mutually exclusive and an estimate of the likelihood that the peak is an artifact is included in the
calculations (see Eq. (5)). Note that the method only deals with the contact probabilities and their transformation and makes no
statement about which contact should be assigned to the NOE.
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input prior probabilities for the next round of
refinement. In contrast to methods such as ARIA
which obtains a list of assignments to refine and
otherwise never revisit the original assignment
process, using structure based contact frequencies
as input priors for Bayesian refinement involves
re-interpretation of the entire peak list. Checking
against the entire dataset reduces the likelihood of
simulation artifacts being passed onto subsequent
rounds and should increase the accuracy of the
final structures. Furthermore, the initial rounds of
iteration can use structures calculated using hybrid
NMR/structure prediction methods. These meth-
ods take advantage of knowledge-based energy
functions and efficient sampling techniques to
greatly reduce the number of contacts required to
calculate an initial set of medium resolution
structures suitable for further refinement (Rohl
and Baker, 2002; Li et al., 2003; Hung and
Samudrala, 2006). These methods require a few
but highly accurate contacts, which can be pro-
vided by our Bayesian approach even with noisy
or ambiguous data.

Applications of the Bayesian approach gener-
ally involve converting the probabilistic output to
a deterministic form such as contact predictions or
constraints. The most interesting applications take
advantage of the fact that both inputs and outputs
are probabilistic. For example, incorporating
probabilistic chemical shift assignments from
programs such as SPI (Grishaev and Llinas, 2002)
can be accomplished by multiplying the prior
contact probabilities in the Bayesian equations by
the assignment probability and summing over all
assignment scenarios. This rigorously propagates
the uncertainty only to the affected posterior
contact probabilities allowing accurate inferences
to be made from those contact probabilities
unaffected by the chemical shift ambiguities. The
ability of different Bayesian approaches to be
linked enables the entire data processing pipeline
to be integrated with iterative structure refinement,
allowing the uncertainties in the data to be itera-
tively resolved or reflected quantitatively as
uncertainty in the final structure (Rieping et al.,
2005).

Computational details and availability of software

The software is accessible through the Protinfo
NMR server http://protinfo.compbio.washington.

edu/protinfo_nmr (Hung and Samudrala 2003b;
Hung et al. 2005). Chemical shifts, peak lists can
be submitted and the posterior contact probabili-
ties returned along with assignments in XEASY
format suitable for use with CYANA. The web-
server also accepts structures as optional input
which may be used as an alternative source of
prior contact probabilities. This allows the use of
the output contact probabilities and assignments
for iterative refinement. Results are typically re-
turned within 5–10 minutes.
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