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Abstract
Background: We thoroughly analyse the results of 40 blind predictions for which an experimental
answer was made available at the fourth meeting on the critical assessment of protein structure
methods (CASP4). Using our comparative modelling and fold recognition methodologies, we made
29 predictions for targets that had sequence identities ranging from 50% to 10% to the nearest
related protein with known structure. Using our ab initio methodologies, we made eleven
predictions for targets that had no detectable sequence relationships. 

Results: For 23 of these proteins, we produced models ranging from 1.0 to 6.0 Å root mean
square deviation (RMSD) for the Cα atoms between the model and the corresponding
experimental structure for all or large parts of the protein, with model accuracies scaling fairly
linearly with respect to sequence identity (i.e., the higher the sequence identity, the better the
prediction). We produced nine models with accuracies ranging from 4.0 to 6.0 Å Cα RMSD for 60–
100 residue proteins (or large fragments of a protein), with a prediction accuracy of 4.0 Å Cα
RMSD for residues 1–80 for T110/rbfa.

Conclusions: The areas of protein structure prediction that work well, and areas that need
improvement, are discernable by examining how our methods have performed over the past four
CASP experiments. These results have implications for modelling the structure of all tractable
proteins encoded by the genome of an organism.

Background
The state of blind protein structure prediction
The community-wide experiment on methods to test pro-
tein structure prediction (CASP) was first initiated in
1994, as a means of evaluating structure prediction meth-
ods in a blind and rigourous manner [1]. This was moti-
vated in part by claims in the literature of the protein
folding problem being "solved" without producing tangi-
ble benefits, since most of the "solutions" included a
strong dependence on the test set. These experiments eval-
uate prediction techniques by asking modellers to con-

struct models for a number of protein sequences before
the experimental result is known, over a period of 3–4
months. We have taken part in all four CASP experiments,
including the most recent one (CASP4) that finished in
December 2000  [http://predictioncenter.llnl.gov]. The
CASP4 results provide a benchmark as to what level of
model accuracy we can currently expect from our ap-
proaches.

There are three primary categories of methods for predict-
ing protein structure from sequence: comparative model-
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ling, fold recognition, and ab initio prediction. In the
comparative modelling and fold recognition categories,
the methodologies rely on the presence of one or more ev-
olutionarily related template protein structures that are
used to construct a model; the evolutionary relationship
can be deduced from sequence similarity [2–5] or by
"threading" a sequence against a library of structures and
selecting the best match [6–8]. For both of these ap-
proaches, a sequence alignment between the target pro-
tein to be modelled and the evolutionarily related protein
with known structure is used to create the initial or seed
model. In the ab initio category, there is no strong depend-
ence on database information and prediction methods are
based on general principles that govern protein structure
and energetics [9–13]. The categories vary in difficulty,
and consequently methods in each of these categories
produce models with different levels of accuracy relative
to the experimental structures.

Since the inception of CASP, predictors all over the world
have built models for 128 proteins using the methodolo-
gies described above. Before the first CASP experiment,
published results in comparative modelling in the litera-
ture usually were obtained by applying structure predic-
tion methods in the context of the exact experimental
structure; for example, re-building side chains on the na-
tive main chain, or re-building regions of main chain
keeping the rest of the experimental structure fixed. (This
practice continues to this day.) Ab initio methodologies,
parameterised extensively on small test sets, failed when
given novel types of sequences.

CASP1 was an eye-opener in terms of understanding the
difficulty of making accurate predictions on approximate
templates in comparative modelling [14]. The main prob-
lems in creating a good comparative or fold recognition
model were related to alignment between the template
and target sequences, and building of non-conserved var-
iable regions (side chains, and main chain loops). In the
ab initio category, it appeared that methods could not sam-
ple conformational space accurately, and select native-like
conformations, for all but very small fragments. The high-
light of CASP1 was the recognition of threading as viable
method for predicting folds [15], and the success of neu-
ral-network based secondary structure prediction meth-
ods [16].

The second CASP showed some improvement in two are-
as: In comparative modelling, loops were being built bet-
ter, and the use of hand-inspected alignments greatly
increased model accuracy [17]. In the fold recognition cat-
egory, alignments as well as prediction of folds improved
[18]. The results in the ab initio category remained virtual-
ly unchanged except for one model of the alpha-helical

protein NK-Lysin predicted to within 6.0 Å Cα RMSD, cap-
turing the correct topology [19].

The third CASP saw consistent but little progress relative
to CASP2 in both comparative modelling and fold recog-
nition categories [20,21], but the most dramatic results
were observed in the ab initio category. Here multiple
groups predicted large parts of a few protein sequences at
a crude topological level (within 6.0 Å Cα RMSD for � 60
residues) [22].

Performance of our methods at CASP1-3: Comparative 
modelling
Table 1 shows a general estimate of how well our compar-
ative modelling prediction methods have performed at
different CASP experiments [23,24].

Even though our methods produced mediocre results at
CASP1, we realised that a major problem with accurate
comparative modelling had to do with the interconnected
nature of protein structures [23]: If a certain region of the
protein varied with respect to the homologue, then it was
likely that a structurally interacting region would also
vary, even if that region was conserved in sequence. We
therefore developed a graph-theory based approach to ad-
dress this problem which demonstrated significant
progress in loop building at CASP2 (Table 1) [24]. The
CASP3 and CASP4 results are minor improvements over
the CASP2 results since the enhancements made to the
graph theory method have been minimal.

Performance of methods at CASP1-3: Ab initio prediction
In the ab initio category, as with comparative modelling,
the first CASP experiments did not live up to the results
previously published in the literature [16,19]. It was not
until CASP3 (the first time where we took part in this cat-
egory) that the first consistent positive results were seen:
several groups were able to predict the correct topologies
for small proteins, or large fragments of a protein (~60–80
residues to about 6.0 Å Cα RMSD relative to the experi-
mental conformation) [22,25].

CASP4
The fourth CASP was held in December 2000. CASP4
demonstrated further improvement in our methodologies
in both comparative modelling and ab initio prediction
[26]. Our approaches combine a Monte Carlo procedure,
simulated annealing, genetic algorithms, graph theory,
and semi-exhaustive searches with move sets consisting of
fragments and discrete state models, and scoring func-
tions consisting of all atom-based pairwise functions, hy-
drophobicity indices, secondary structure preferences, and
hydrogen bonding. The goal was to develop components
that form a structure prediction engine, combining and
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innovating upon previously developed approaches by ob-
serving what methods work well at the previous CASP ex-
periments, and adding new components of our own.

We focus here on the results of our prediction methodol-
ogies on all of the 40 sequences, for which an experimen-
tal answer was later available. Unlike the assessors'
evaluations at CASP (which has recently appeared in the
special issue (S5) of Proteins: Structure, Function, and Ge-
netics), which focus on how well a particular group per-
forms, we treat CASP as a test-bed for how well an
individual method performs. Using the lessons learnt
from CASP successes and failures, we suggest a unified ap-
proach that mixes and matches between the best predic-
tions to produce the best results. The aim of this work is
to illustrate when our prediction methods work, when
they fail, and what this means in the context of building
models for all proteins encoded by the genome of an or-
ganism at the present time.

Results and Discussion
We present a comprehensive analysis of all 40 blind pre-
dictions, for which an experimental answer was later
available, that were made for CASP4 using a barrage of
different but related techniques. We discuss what went
right, what went wrong, what further improvements can
be made to the methodologies, and the implications of
these results for modelling the structure of all tractable
proteins encoded by the genome of an organism.

What went right; what went wrong
The CASP4 results show that within each of the general
structure prediction categories, some methods, including
ours, are able to produce models with a fair amount of ac-
curacy (quantified in the sections below). Further im-
provements are necessary to overcome the limits of
current approaches.

Comparative modelling and fold recognition
Table 2 compares all the predictions we made for CASP4
using comparative modelling and fold recognition meth-
ods. The results are qualitatively assessed as being one of
"excellent", "good", "useful", and "failure". In the com-
parative modelling category, we made 29 predictions for
targets that had sequence identities ranging from 50% to
10% to the nearest related protein with known structure.
For 23 of these proteins, we produced models ranging
from 1.0 to 6.0 Å root mean square deviation (RMSD) for
the Cα atoms between the model and the corresponding
experimental structure for all or large parts of the protein,
with model accuracies scaling fairly linearly with respect
to sequence identity (i.e., the higher the sequence identity,
the better the prediction). These 23 proteins ranged in ac-
curacy from "excellent" to "useful". Figure 1 shows some
examples of the comparative modelling predictions with
different difficulties made at CASP4.

The comparative modelling and fold recognition targets
are in Table 2 are sorted by the difficulty index. The per-
centage identities for alignments between several compar-
ative modelling targets and their corresponding templates
fall in the twilight zone or below (alignments with per-
centage identities <= 30%). In fact, such targets belong
more in the category of fold recognition since it is clear
that even a 20% identity alignment can easily result in a
wrong fold assignment. (The percentage identity is used
for illustration purposes only–BLAST e-values follow a
similar trend but are most robust.)

Our comparative modelling methods produce excellent
models when the percentage identity between the target
and corresponding template sequence is high (usually
within 2.0 Å Cα RMSD for > 30% identity). In several cases
where the alignment falls into the twilight zone (20–30%
sequence identity), models around 4.0 Å Cα RMSD are
produced (T0122/trpa, T0112/dhso, T0125/spl8, T0121/
malk).

Table 1: Qualitative assessment of our comparative modelling methods at CASP experiments. 

Category CASP1 CASP2 CASP3 CASP4

Alignment quality poor fair fair fair
Side chains ~50% ~75% ~75% ~75%
Short loops (≤ 6 aa) ~3.0 Å ~1.0 Å ~1.0 Å ~1.0 Å
Longer loops (> 6 aa) > 5.0 Å ~3.0 Å ~2.5 Å ~2.0 Å

The results given are for predictions for which there was little or no alignment error (since we relied on publicly available webservers for align-
ments). For evaluating side chain predictions, the percentage of χ1 torsion angles predicted within 30° on average is given. For evaluating variable 
main chain (loop) predictions, the average of the Cα root mean square deviation (RMSDs) (calculated using a global superposition of the target and 
the model) is shown. The major improvement in our methods from CASP1 to CASP2 is from the use of manually-curated alignments and the devel-
opment of a graph-theory approach to handle the interconnectedness problem in protein structures [35].
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In one case, T0092/yeco, the percentage identity between
the target and template proteins in the alignment we used
was 12%, but we predict 107 residues to within 6.0 Å Cα
RMSD. However, not all cases where we assumed a ho-
mology relationship provided similar results, and the fail-
ures are indicated as "F" in Table 2.

While the graph-theory methods have been fairly success-
ful at handling the interconnectedness problem to build
non-conserved side chains and main chains [24], other
major problems preventing the construction of accurate
comparative models have to do with inaccurate align-
ments and using the template structure as a static model

upon which to build variable main chains. In the former
case, if a region of the alignment is incorrect but is as-
sumed to be correct, then no amount of further model
building will fix this error. In the latter case, the loop and
side chain construction methods, even if interconnected-
ness is taken into account, are limited by the approximate
nature of the template framework. In other words, align-
ment errors are irrecoverable. Even though 50–70% of the
regions (of up to 15 residues) we thought would vary with
respect to the parent homologue structure were predicted
to within 3.0 Å Cα RMSD, this is mostly in cases where the
approximate template is well-predicted (within 2.0 Å Cα
RMSD).

Figure 1
Six examples of our comparative modelling predictions at CASP4 for targets with different difficulties. The
superposition of the model and the experimental structures is shown, along with the Cα RMSD relative to the experimental
structure and the percentage identity of the alignment between the target and template sequences. We made useful predic-
tions for 23 out of 29 targets: sequences with high percentage identity to the template structures (≥ 50%) were modelled well
(1–2 Å Cα RMSD) with model accuracy decreasing (4–6 Å Cα RMSD) fairly linearly as the relationship becomes more tenuous
(10–25% sequence identity). Models considered are listed in Table 2.

T128 - 1.0 Å (198 aa; 50% id) T111 - 1.7 Å (430 aa; 51% id) T122 - 2.9 Å (241 aa; 33% id)

T125 - 4.4 Å (137 aa; 24% id) T112 - 4.9 Å (348 aa; 24% id) T92 - 5.6 Å (104 aa; 12% id)
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Ab initio prediction
Table 2 compares all the predictions we made for CASP4
using our ab initio methods. We made eleven predictions
for targets that had no detectable sequence relationships
when we began the modelling process. We produced nine
models with accuracies ranging from 4.0 to 6.0 Å Cα
RMSD for 60–100 residue proteins (or large fragments of
a protein). Figure 2 illustrates some of our more successful
predictions.

At CASP4, we were consistently able to predict 60–80 res-
idue consecutive fragments to within 6.0 Å, and, at times,
to within 4.0 Å Cα RMSD. These results are much more
consistent than at CASP3, and are also of better quality.

While these predictions are a significant improvement
compared to the previous CASP results, we still have to
make much progress before we can produce models rival-
ling that of experiment in accuracy. Given the range of
RMSDs for the population of conformations sampled
(i.e., "decoys") for each of the proteins (average range for

Table 2: Results of our comparative modelling and fold recognition predictions made at CASP4. 

Rat-
ing

Diffi-
culty

Target Fraction of Residues1 % of 
Residu

es1

RMSD1 
(Å)

Number 
of 

Residue
s2

RMSD2 
(Å)

Models consid-
ered

% 
sequen
ce iden-

tity

E 1 T0128/sodm 202/211 96 1.4 198 1.0 1–5/5 50
E 1 T0122/trpa 235/241 98 2.1 241 2.9 1–5/5 33
E 1 T0123/lacp 145/160 91 3.0 160 4.0 1–5/5 60
E 1 T0099/xxxx 49/56 88 3.0 56 4.7 1–4/4 53
E 1 T0111/eno 425/430 99 1.3 430 1.7 1–5/5 51
E 2 T0125/sp18 125/137 91 3.7 137 4.4 1–4/5 24
E 2 T0113/hcd2 231/251 92 2.0 251 4.4 1–5/5 33
E 3 T0121/malk 228/372 61 3.0 245 3.9 1–5/5 27
G 3 T0112/dhso 290/348 83 3.1 348 4.9 1–5/5 24
G 3 T0103/picp 162/368 44 3.6 156 6.0 1–3/5 26
G 3 T0092/yeco 108/227 48 3.5 104 5.6 1–5/5 12
U 3 T0117/dnk 124/250 63 3.9 1–5/5 21
U 4 T0109/orn 82/182 45 4.3 67 6.3 4–5/5 16
U 4 T0100/pmea 98/342 29 4.0 65 6.0 1/5 10
F 4 T0095/ctn1 33/244 14 4.5 1–5/5 20
U 4 T0127/bchi 95/332 29 3.6 60 5.8 1,3/5 23
U 4 T0101/pell 72/400 18 3.3 74 6.0 1–5/5 22
U 5 T0090/yqie 96/209 48 3.6 107 6.0 1–5/5 19
G 5 T0089/ftsa 124/378 33 3.6 81 5.9 1–5/5 20
F 5 T0108/cbd17 26/179 15 3.4 25 6.1 1–5/5 22
F 5 T0107/cbd9 27/188 14 4.8 28 6.0 1–5/5 19
F 5 T0115/khse 46/296 16 4.5 40 6.0 4–5/5 20
G 6 T0096/fadr 70/222 30 3.6 83 6.0 1–3/5 21
U 6 T0104/yjee 55/158 55 4.0 1–5/5 21
U 6 T0087/ppx1 50/309 16 4.3 54 6.0 1–5/5 17
F 6 T0094/cpdas 35/177 20 3.4 29 6.0 1–5/5 20
U 6 T0120/xrcc4 82/203 40 3.0 96 5.2 5/5 12
F 6 T0116/muts 46/811 6 4.2 50 6.3 1–5/5 11
U 8 T0124/plcb 54/120 22 3.1 60 3.6 2/5 19

The targets (column 3) are sorted by their difficulty (column 2) as provided by the CASP4 assessors (determined by the degree of similarity of the 
target protein to proteins with known structures). Shown also is a subjective evaluation of the quality of the model (column 1; E – excellent, G – 
good, U – useful, F – failure), the number of residues (over the total) evaluated using the criterion1 provided by the CASP4 assessors which consid-
ers non-consecutive Cα atoms in the calculation of the RMSD, the percentage of residues evaluated by criterion1, and the corresponding RMSD1; 
the number of residues evaluated using our criterion2 which considers only consecutive regions and the corresponding Cα RMSD2 (some values are 
missing using this criteria since the experimental result was not provided to the predictors); the models (out of a total of five) for which the evalu-
ation/result applies; and the percent sequence identity for the alignment between the target and the closest template structure used to construct 
the model. The data indicate that the modelling performs best on targets with alignments that have > 25% sequence identity to the closest template 
structure, resulting in 23/29 useful, good, or excellent predictions.
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the eleven predictions was 9.3 – 17.6 Å Cα RMSD for the
entire protein; and 5.0 – 12.6 Å Cα RMSD when only the
best fragments are considered), it is clear that devising rep-
resentations that will allow us to explore protein confor-
mational space such that near-native conformations are
encountered is a major bottleneck. Our filter-based scor-
ing function approach generally picks conformations
from the lower end of the RMSD distribution (usually
within the top 1%, and no worse than the 10%, of the
conformations sampled), but further improvements can
be made.

Caveats regarding the use of results from CASP experi-
ments
Averaging over different methods and contexts
The results provided by the CASP organisers and assessors
show how well a particular group did, but do not measure
performance of individual methods in separate contexts.
This makes it harder to determine which methods work
well and places an inherent penalty on trying different
non-conservative approaches. For example, even success-
ful loop and side chain building methods will fail on

comparative models based on incorrect alignments (in
our case, we tried six different approaches in the three cat-
egories combined, the results for only two of which are
listed in Figures 1 and 2). This problem has been alleviat-
ed to some degree by the CAFASP experiment [47], which
provides a strict method-by-method automatic evalua-
tion, but it requires that models be prepared by the means
of an automated server in a relatively short time-frame.
Ranking results by methods used (based on keywords pro-
vided when the model is submitted, which could be
standardised), and considering subsets of the target rele-
vant to particular methods, would help significantly in
identifying the methods that work best.

Subjective quality of evaluations
Once a certain evaluation measure is chosen, then evalu-
ating all models submitted by that measure is objective.
However, particular methods appear to perform better de-
pending on the choice of evaluation criteria used (for ex-
ample, Cα RMSD over a contiguous set of residues, which
we prefer, vs. Cα RMSD over non-contiguous residues).
This illustrates the need for more than one measure, but

Figure 2
Examples of our ab initio predictions. Five of the examples were predictions submitted for CASP4; the sixth (T102/as48)
is a "postdiction" using the actual secondary structure assignment that was available to all CASP4 predictors (our CASP4 sub-
mission for this target used predicted secondary structure that was only 60% accurate). The experimental structure is on the
left and the model is on the right. We were able to make topologically accurate predictions (� 6.0 Å Cα RMSD) for 9 out of
11 targets modelled. Targets with largely helical content are modelled well, with predictions as accurate as 4.0 Å Cα RMSD for
80 residues between the model and the experimental result. Models considered are given in Table 3.

T97 - 6.0 Å (80 aa; 18-97) T98 - 6.7 Å (60 aa; 37-105) T102 - 5.3 Å (70 aa; 1-70)

T106 - 6.2 Å (70 aa; 6-75) T110 - 4.0 Å (80 aa; 1-80) T114 - 6.5 Å (45 aa; 36-80)
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even with that taken into account, there exists an inherent
subjectivity in measurement, especially given the asses-
sor's visual evaluation of the models during the CASP ex-
periment (one of the authors of the paper, M.L., was an
assessor at CASP2). The reason there is a problem is be-
cause the results are not entirely clear (i.e., the problem
has not been solved). Until predictions with accuracies ri-
valling that of experiment are made, assessment of predic-
tions must be done automatically using limited and
stringent criteria, most relevant to biologists interested in
function. Such a criteria could include, for example, how
well the model picks out structurally similar proteins from
the database of known structures, relative to the experi-
mental result.

What can be done
Promising future areas
While the CASP experiments provide for an environment
where rapid testing of ideas is possible in a rigourous
manner, a lot of the development is ad hoc, guided by in-
tuition, and not all parameter choices are explored thor-
oughly.

The CASP experiments also show that there is not one sin-
gle algorithm that can "solve" the protein structure predic-

tion problem. The most successful methods are those that
combine and build upon the techniques developed by
several researchers in the last thirty years (special issues of
Proteins: Structure, Function, Genetics, 1995, 1997, 1999,
and 2002). Generally the methods have incorporated dif-
ferent sampling techniques and a variety of scoring func-
tions each of which aids prediction of structure only to a
limited degree when used individually, but are producing
models useful for further biological study when com-
bined together in a coherent manner.

To provide a guidance for future work, we analysed some
of the more promising paths that we discovered to assess
their viability in improving our methods and making bet-
ter predictions, focusing on four major areas: alignment,
refinement, sampling, and selection. An analysis of the re-
sults generated by our methods at the next CASP (evaluat-
ed in December 2002) will provide a measure of the
effectiveness of these improvements.

Comparative modelling and fold recognition: Alignment and template 
selection using all-atom scoring functions
A major reason for alignment methods failing at CASP has
to do with using sequence information only and not in-
corporating structural information. For example, while

Table 3: Results of our ab initio predictions made at CASP4.

Rat-
ing

Diffi-
culty

Target Fraction of 
Residues1

% of 
Residu

es1

RMSD1 
(Å)

Numbe
r of 

Residue
s2

RMSD2 
(Å)

RMSD2 range (Å) Models 
consid-
ered

E 4 T0110/rbfa 77/95 85 3.9 80 4.0 4.0–16.5 3
G 5 T0126/omp 44/163 27 4.3 60 6.9 5.5–13.0 1,3
G 5 T0105/sp100 39/94 41 4.3 55 6.4 5.8–12.5 4,5
G 5 T0114/afp1 34/87 39 3.9 45 6.5 5.6–12.1 1
F 5 T0102/as48 33/70 47 4.3 70 8.9 7.3–12.5 1–5
- 5 T0102/as48 70/70 99 5.6 70 5.6 3.7–12.0 2
F 5 T0118/enrn 28/149 22 4.5 40 6.7 4.2–10.5 2–5
E 6 T0097/er29 58/105 55 3.7 80 6.2 3.6–13.0 4
E 7 T0091/ybab 50/109 56 3.0 1–5
E 7 T0106/sfrp3 49/125 39 4.0 70 6.2 5.2–13.6 3,5
G 8 T0098/sp0a 47/119 40 3.5 60 6.0 3.6–11.7 2
G 8 T0086/ubic 44/164 27 4.3 50 6.7 5.3–10.8 1–5

The targets (column 3) are sorted by their difficulty (column 2) as provided by the CASP4 assessors (determined by the degree of similarity of the 
target protein to proteins with known structures). Shown also is a subjective evaluation of the quality of the model (column 1; E – excellent, G – 
good, U – useful, F – failure), the number of residues (over the total) evaluated using the criterion1 provided by the CASP4 assessors which consid-
ers non-consecutive Cα atoms in the calculation of the RMSD, the percentage of residues evaluated by criterion1, and the corresponding RMSD1; 
the number of residues evaluated using our criterion2 which considers only consecutive regions, the corresponding RMSD2, and the RMSD2 ranges 
for the regions of the same length in all the sampled conformations (some values are missing using this criteria since the experimental result was not 
provided to the predictors); and the models (out of a total of five) for which the evaluation/result applies. The second row/result given for T102/
as48 is actually a "post-diction" made using the NMR secondary structure assignments available to all CASP4 predictors (we used predicted second-
ary structure with a three-state accuracy of 60% in the original prediction, resulting in a signi cantly worse model). Nine out of eleven predictions 
are good or excellent.
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modelling T24/ubc9, sequence alignments generated by
several methods have an alignment error relative to the
structural alignment [24]. The sequence identity/similari-
ty scores would have been lower with the new alignment
since the number of identical residues decreases by six in
a region of fourteen residues. This phenomenon has been
observed time and again at CASP, illustrated in Figure 3 by
three examples, including T24/ucb9. We were later able to
readily distinguish between the correct and incorrect
alignments when an all-atom scoring function was ap-
plied to the models constructed using both alignments,
and justify the changes by detailed environment analysis.
The score for the models based on the correct alignments
were better by ~10% on average relative to the model with
the original alignment. This would indicate that a se-
quence alignment algorithm that incorporates structural
information in a rigourous manner is useful and necessary
to handle the alignment problem.

Historically, in comparative modelling, the template with
the highest sequence identity or similarity to the target se-
quence being modelled has been used for further analysis.
However, a comparison of members of a family with
known structures shows that sequence only measures do
not correlate absolutely with the structural similarity [48]
even in cases where the evolutionary relationships are ob-
vious.

We thus devised an experiment where we constructed
models for protein families with large numbers of known
structures (specifically the globin and the immunoglobu-
lin families). We then conducted an all-against-all homol-
ogy modelling exercise where every member of the family
was modelled on every other template (resulting in 29
and 60 models for each member of the globin and immu-
noglobulin families respectively). We compared the per-
formance of the all-atom scoring function to two
sequence only metrics. The results for the globin family
are given in Figure 4. On average, using the all-atom func-
tion improves model quality by 0.8 Å Cα RMSD compared
to only using sequence identity. The theoretical best im-
provement that could have been achieved on average is
0.9 Å Cα RMSD. Similar improvements are observed for
the immunoglobulin family.

Taken together with previously published results [32,49],
these results strongly indicate that the all-atom scoring
function is a powerful method to handle the alignment
problem, the template selection problem, the construc-
tion of side chains and main chains, and potentially help-
ful in refining models when continuous forms of the
function are used.

Ab initio prediction: Sampling conformational space
At CASP4, we mixed and matched different move sets and
search methods for sampling protein conformational
space. Since we did not have the time to test the perform-
ance of each move set or search method, we assumed they
would work equally well on average and combined them
sequentially which generally resulted in improvements.

Table 4 shows the average results of different combina-
tions of move sets and search methods for a set of six pro-
teins (PDB codes: 1ctf, 1e68, 1eh2, 1nkl, 1pgb, 1sro; four
of these were CASP targets). The results shown are for
10,000 trajectories with different starting random seeds.
While some of the combinations do not necessarily en-
hance the simple approach of using only 3-residue frag-
ments with a straight-forward monte carlo procedure, the
combination of using fragments and the 14-state model
for making moves, with MC and GA search techniques for
the sampling, shows a significant improvement, which we
hope to demonstrate at CASP5 by further extending the
preliminary studies described here. Since these combina-
tions were tried with equal weighting, further improve-

Figure 3
Comparison of sequence-based and structure-based
alignments for T24/ubc9, T9/csc, and T28/egi. For
each target, the percentage identity to the template is given
based on an alignment after structure comparison, and the
sequence alignment we used at CASP. Identities are indicated
by "*". For all cases, the structure-based alignment, generated
using the ALIGN [66] or CE programs [67], results in a
lower similarity/percentage identity score between the target
and template proteins. An all-atom conditional probability
discriminatory function is able to readily distinguish a model
constructed using the accurate structure-based alignment
from one that is constructed using the sequence-based align-
ment.

T24/ubc9 with 1aak alignment differences (residues 9-31)

Structure-based alignment: 36.2 % id

-MSGIALSRLAQERKAWRKDHPFG
MSTPARKRLMRDFK-RLQQDPPAG

* * *

Structure-based alignment: 32.6 % id

CNFVNSDNDVERTSPVIERLDELG
CNTPAGAKVY-TSGRDQIKL-PKG
**                 *   *

Sequence-based alignment: 40.2 % id

MSGIALSRLAQERKAWRKDHPFG
MSTPARKRLMRDFKRLQQDPPAG
**  *  **    *    * * *

T9/csc with 2cbp alignment differences (residues 60-83)

Sequence-based alignment: 33.6 % id

CNFVNSDNDVERTSPVIERLDELG
CNTPAGAKVYTSGRDQI-KLPK-G
**              *  *   *

T28/egi with 1cel alignment differences (residues 49-70)

Structure-based alignment: 46.7 % id

CTVNGGV----NTTLCPDEATCGKNC
CYDGNTWSSTLCP---DNETCAK-NC
*                       **

Sequence-based alignment: 49.0 % id

CTVNGGVNTTLCPDEATCGKNC
CYDGNTWSSTLCPDNETCAKNC
*        *****  ** ***
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ment may be obtained by parameterising how the
different move sets and search techniques are applied de-
pending on the trajectory landscape.

Ab initio prediction: Selecting native-like conformations
Even though our all-atom function is readily able to dis-
tinguish native-like conformations in certain scenarios, it
is not adequate for large sets of decoys where the closest
conformation generated is represented at the topological
level (� 6.0 Å Cα RMSD relative to the experimental re-
sult). Using the all-atom function alone to select native-

like conformations is not likely to suffice when it is also
used in the actual minimisation/search process, since all
conformations generated in such searches represent local
minima of this function. Thus, our method has incorpo-
rates multiple functions and uses hierarchical filtering to
reduce the number of conformations from a large sample
to a tiny fraction to enhance the signal and eliminate false
positives.

At CASP4, we used our expertise to manually devise a sin-
gle hierarchical filtering scheme where we successively

Figure 4
Performance of different metrics for selecting the best model for the globin protein family. The Cα RMSD
selected by a particular metric is shown by a line connecting each member of the family. The different metrics are sequence
identity, sequence similarity based on several different scoring matrices (the best results are shown, based on using the
BLOSUM62 matrix), and the all-atom scoring function. The best model that could have been selected is shown by a solid line.
On average, using the all-atom function improves model quality by 0.8 Å Cα RMSD compared to only using sequence identity
to select the template structure. The best improvement that could have been achieved on average is 0.9 Å Cα RMSD.
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eliminated 10% of the conformations with each filter un-
til we were left with one conformation. In the experiment
in Table 5, we compare the average performance of each
of the individual filters to our final hierarchical combina-
tion when reducing the 10,000 conformations generated
for each protein by our search method (corresponding to
the last entry in Table 4) to 1000 conformations. The hi-
erarchical combination first reduces the 10,000 confor-
mations to 8000 by applying the density function, which
is then reduced to 6000 by applying the hydrophobic
compactness function, which is then reduced to 4000,
3000, 2000, and 1000 in the same order as presented in
Table 5.

Table 5 shows that particularly promising filters include
the use of density-based scoring functions, hydrophobic
compactness, all-atom pairwise preferences and match of
the final conformation to the predicted secondary struc-
ture. Physics-based functions based on electrostatics and
van der Waals interactions do not discriminate well on

their own, and only do so when an explicit solvation term
is added to the functions.

Table 5 also shows that even though some of the individ-
ual functions perform well, the combination of all the
functions applied in a hierarchical manner performs the
best. As mentioned earlier, this combination was devel-
oped through intuition under pressure from the CASP ex-
periment (though here the goal was to reduce the total
number of conformations to five). This suggests that there
exists more optimal (linear and non-linear) combinations
of these functions.

Computational issues
Table 6 lists the times taken for the computational tasks
outlined in this paper. Times are given per 1000 MHz Pen-
tium III processor and for a cluster of 64 such processors
when the algorithm can run in parallel. For CASP4, pre-
dictions were made with computing power 1/4th of the
capability shown.

Table 4: Performance of different move sets and search techniques on a set of six proteins. 

Method RMSD range (Å)(average) Percentage ≤ 6.0 Å (average %)

3-residue fragments + MC 4.5 – 14.9 4.1
14-state φ/ψ model + MC 4.6 – 15.1 4.2
3-residue fragments + MC + GA 4.2 – 14.2 4.6
14-state φ/ψ model + MC + GA 4.1 – 13.8 4.8
fragments + 14-state model + MC + GA 3.8 – 14.4 9.3

For each combination of methods, the Cα RMSD range and the percentage of conformations within 6.0 Å Cα RMSD are given. The results are over 
six proteins and 10,000 decoys each, and each trajectory to produce a single decoy consisted of 50,000 steps. The combination of the two move 
sets and the two search techniques performs the best.

Table 5: Performance of individual and combination scoring functions on six decoy sets. 

Scoring function RMSD range (Å) (average) Percentage ≤ 6.0 Å (average)

Initial 3.8 – 14.4 9.3
Density 3.9 – 12.1 12.3
Hydrophobic compactness 4.1 – 13.8 10.1
All-atom pairwise 4.1 – 14.1 11.0
Electrostatics 5.2 – 14.4 4.2
Van der Waals 5.6 – 13.1 3.9
Secondary structure match 4.5 – 10.1 10.2
Combined 3.9 – 13.2 14.1
Random 6.6 – 12.1 0.5

Each function reduces a sample of 10,000 conformations to 1000 for which the Cα RMSD range and the percentage of conformations within 6.0 Å 
Cα RMSD are given. The "Initial" row represents the initial distribution (generated by the method corresponding to the last entry in Table 4). The 
"Random" function simply selects an arbitrary 1000 conformations from the pool of 10,000 for each protein. The best results are achieved using the 
combined function.
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Application of structure prediction methods to whole ge-
nomes
The qualitative assessment of our methods, considered in-
dependently of the difficulty of the prediction, ranks 32/
40 models as useful, good, or excellent. Similar results are
likely to be observed when these methods are applied to
large numbers of sequences if we assume that the sample
of 40 proteins roughly reflects the distribution of proteins
seen in a genome. In practice, it is likely that we will en-
counter more homologous proteins in a genome since ex-
perimentalists are not as likely to solve a structure for
which there clearly exists a homolog.

This is a long way from our predictions at CASP1 [23], and
our initial implementations of these methodologies
[12,24]. Yet there is much room for further improvement.
Besides improving the existing methodologies, and devel-
oping new ones, we can also integrate other existing algo-
rithms such that consensus predictions can be used to
assign confidence levels, as well as having multiple choic-
es for an outcome that can be tested experimentally.

Analyses of small genomes show that about 30–40% of
the proteins within the genome can be modelled by com-
parative modelling and fold recognition methods
[27,50,52]. An additional 20–30% of the sequences are
(or contain) small domains with simple secondary struc-
tures that are viable candidates for ab initio structure pre-
diction [53]. The remaining proteins are usually not
amenable to structure prediction and sometimes even
structure determination (a significant fraction of the latter
are membrane proteins).

It is thus possible to construct a "genome prediction en-
gine" using the computational resources available where
we can take the protein sequences encoded by an organ-

ism's genome and attempt to predict their structures, and
use the modelled structures to predict functions. The goal
of this endeavour is to improve existing methods and de-
velop new ones to perform various facets of the genome/
proteome modelling task in an automated fashion. To
this end, our predictions for the next CASP are almost en-
tirely focused on the fully-automated (CAFASP) aspect via
the use of a prediction server  [http://protinfo.comp-
bio.washington.edu]

Using predicted structures to annotate function
The reason for obtaining structures for proteins encoded
by a genome is that they can be used to understand func-
tion and further our knowledge about the organism's bi-
ology. Even though structure prediction methods need
further development, it is possible to produce models
where functional hypotheses can be tested in a rational
manner (for example, with mutagenesis experiments)
through detailed analysis [54]. Additionally, structure
comparisons can be used to detect functional relation-
ships that cannot be detected by sequence information
alone [52], and micro-environment analyses that parse
models for particular three-dimensional motifs [55] can
be used to discern molecular function. Both of these struc-
ture-based approaches, used complementarily in conjunc-
tion with sequence-only motif-finding approaches [56–
58] and experimental data, will enable to us better assign
function to all or large parts of a proteome.

Conclusions
Why is protein/proteome modelling important?
Even given the ongoing structural genomics projects, the
continually increasing amount of DNA and protein se-
quence data from genome projects makes it infeasible for
NMR and x-ray crystallography techniques to rapidly pro-
vide information about the 3D structures of the sequences

Table 6: Approximate computation times.

Task ~ Time per CPU ~ Time for cluster

Comparison of two protein sequences < 1 sec -
Clustering of sequence families for 3000 proteins 3 days 1 day
Initial model building by minimum perturbation < 1 sec -
Graph-theory search with 30,000 nodes 24 hours -
Re nement of single model using ENCAD for 200 
steps

< 1 sec -

Evaluation by all-atom function for one conformation < 1 sec -
Generating a three-dimensional conformation < 1 sec -
Trajectory of 10,000 steps to generate one decoy 1 minute -
Generating 10,000 decoys 10000 minutes 3 hours

Times are shown for a single 1000 MHz processor, and for a cluster of 64 such processors if the algorithms used can run in parallel. * indicates 
times can vary based on the quality of the results desired.
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determined [59]. Thus there is an urgent need for reliably
predicting structure from amino acid sequence.

Proteins in a cell do not work in isolation of one another.
Thus to understand the function of multi-protein com-
plexes, or whole proteomes, from a structural viewpoint,
it is necessary to have a model for many proteins encoded
by the genome of an organism. The CASP results indicate
that structure prediction methods have matured to a point
where they can be applied on a genome-wide scale, and
that these structures can be used with novel but straight-
forward approaches to annotate and understand function
[54,55,60,61]. The resulting models and annotations,
when combined with other genomic/proteomic data, in-
cluding that from gene expression arrays [62], genome-
wide two-hybrid experiments [63], and other proteomics
studies [64], will provide us with a dynamic picture of or-
ganismal structure, function, and evolution [65].

Methods
In this section, we describe the procedures we used for
making predictions at CASP4. The techniques described
are divided based on the major structure prediction cate-
gories, but methods developed for application in one cat-
egory are useful in the other.

Comparative modelling and fold recognition
The same procedure was used for comparative modelling
and fold recognition targets. Protein sequences deter-
mined to be evolutionarily related to sequences with
known structure were modelled using comparative mod-
elling techniques developed by us. We used a combina-
tion of methodologies grouped together as shown in
Figure 5. Our primary focus was on improving alignment
and template selection techniques, and developing meth-
ods for moving an approximate conformation closer to
the native structure. Additionally, the lessons we learnt
from application of our ab initio methodologies were in-
corporated to better construct non-conserved side chains
and main chains.

Template selection and alignment
Target sequences related to proteins that have conforma-
tions determined by experiment (X-ray crystallography or
NMR) were candidates for comparative modelling. If the
sequence relationship between the template and target
proteins was unambiguous (usually when the sequence
identity is > 40%), or if there was only one protein with
known structure in the family, the template structure was
used to construct the sole initial model. If there were
many possible template structures, models were con-
structed using all available templates.

PSIBLAST alignments and other publicly available servers
such as GenTHREADER [27] and SAM-T99 [28], available

as part of the CAFASP meta-server [29], were also used to
generate a variety of choices for alignments. These alter-
nate alignments were used to construct initial models.
Thus, for a given protein in a family with at least one
known representative structure, there could be many tem-
plate and alignment choices for constructing the initial
models.

Constructing initial models
Following the sequence alignment, an initial model was
generated for each template structure and corresponding
alignment by copying atomic coordinates for the main
chain (excluding any insertions/loops) and for the side
chains of identical residues in the target and template pro-
teins. Residues that differed in side chain type were con-
structed using a minimum perturbation (MP) technique
[24]. The MP method changes a given amino acid to the
target amino acid preserving the values of equivalent tor-
sion angles between the two side chains, where available.
The other angles were constructed for each residue type
using internally developed library based on the most fre-
quently observed χ values in a database of known struc-
tures [30].

Figure 5
Methodology for comparative modelling. Target
sequences related to the sequences with conformations
determined by experiment were candidates for comparative
modelling. Generally alignments were obtained from the var-
ious servers available as part of the CAFASP meta-server
[29]. Initial models were then be constructed and structure-
based alignments were used in an iterative manner to refine
alignments manually. Non-conserved side chains and main
chains were constructed using a graph-theoretic approach
with sampling provided by exhaustive and database searches.
The final conformations were minimised by ENCAD [36].

KDHPFGFAVPTKNPDGTMNLMNWECAIP
KDPPAGIGAPQDN----QNIMLWNAVIP
** * *   *  *     * * *   **

… …

align

build initial model construct non-conserved
side chains and main chains

target sequence template structure

    
 

minimum perturbation
graph theory with systematic

and database searches

refine
ENCAD
 - 
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Manual inspection to improve alignments
An all-against-all structure comparison between all the in-
itial models was used to produce a multiple sequence
alignment based on structural similarity for a given fami-
ly. This alignment was used in conjunction with sequence
information and interactive graphics to create new se-
quence alignments.

Constructing variable side chains and main chains
Multiple side chain conformations for residue positions
that differ in type between the template and target pro-
teins were generated by exploring all the possibilities in a
rotamer library [31]. The most probable conformations
based on the interactions of a given conformation with
the local main chain were selected using an all-atom dis-
tance dependent conditional probability discriminatory
function [32].

A set of possible conformations were generated for main
chain regions (loops) considered to vary in the target with
respect to the template structures, including insertions
and deletions. Main chain sampling was performed using
an exhaustive enumeration technique based on 14 dis-
crete torsion angle states [33]. For longer main chain re-
gions (> 15 residues), fragments from a database of
protein structures are used to generate the torsion angle
values. Developments in our ab initio sampling protocol
were incorporated into our loop sampling technique.

In CASP experiments, main chain regions and side chains
selected for sampling were determined visually using in-
teractive computer graphics. We partially automated this
procedure by developing programs to identify side chains
with implausible packing, clashes, and unfavorable elec-
trostatic interactions with other side chains and/or main
chain.

All-atom conditional probability scoring function
The all-atom scoring function is the core of many aspects
of this project where identification of native-like confor-
mations is required. The function calculates the probabil-
ity of a conformation being native-like given a set of inter-
atomic distances [32]. The conditional probabilities are
compiled by counting frequencies of distances between
pairs of atom types in a database of protein structures. All
non-hydrogen atoms are considered, and a residue-specif-
ic description of the atoms is used, i.e., the Cα of an
alanine is different from the Cα of a giycine. This results in
a total of 167 atom types. The distances observed are di-
vided into 1.0 Å bins ranging from 3.0 Å to 20.0 Å. Con-
tacts between atom types in the 0–3 Å range are placed in
a separate bin, resulting in a total of 18 distance bins. Dis-
tances between atoms within a single residue are not in-
cluded in the counts.

We then compile tables of scores proportional to the neg-
ative log conditional probability that one is observing a
native conformation given an interatomic distance for all
possible pairs of the 167 atom types for the 18 distance
ranges. Given a set of distances in a conformation, the
probability that the conformation represents a "correct"
fold is evaluated by summing the scores for all distances
and the corresponding atom pairs.

Using graph theory to generate consistent conformations
We use a graph-theoretic approach to assemble the sam-
pled side chain and main chain conformations together in
a consistent and optimal manner: Each possible confor-
mation of a residue is represented using the notion of a
node in a graph. Each node is given a weight based on the
degree of the interaction between its side chain atoms and
the local main chain atoms. The weight is computed using
the all-atom scoring function [32]. Edges are then drawn
between pairs of residues/nodes that are consistent with
each other (i.e., clash-free and satisfying geometrical con-
straints). The edges are also weighted according to the
probability of the interaction between atoms in the two
residues. Once the entire graph is constructed, all the max-
imal sets of completely connected nodes (cliques) are
found using a clique-finding algorithm [34]. The cliques
with the best total weights represent the optimal combi-
nations of mixing and matching among the various possi-
bilities, taking the respective environments into account
[35]. The clique-finding approach for generating confor-
mations is fast, since it pre-calculates all the scores. In its
present implementation, it can sample up to 1011 confor-
mations in a 24-hour period on a 1000 MHz Intel proces-
sor.

Selecting the most native-like conformations
All models produced are refined using the Energy Calcula-
tion and Dynamics (ENCAD) package [36]. For a given
protein sequence, there could be more than one all-atom
model produced. For such cases, all models were ranked
using the all-atom pairwise scoring function [32] and the
best scoring models are considered to be the most native-
like ones.

Ab initio prediction
Target sequences without known homologues or ana-
logues that were small in size and/or predicted to have
largely helical content were modelled by our ab initio pro-
tocol. Such sequences can be subsequences of larger pro-
teins, in which case they most likely represent domain
boundaries [37].

Our general paradigm for predicting structure involves
sampling the conformational space (or generating "de-
coys") such that native-like conformations are observed,
and then selecting them using a hierarchical filtering tech-
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nique with many different scoring functions (Figure 6).
The two parts to our method are designed to be complete-
ly automated and readily extendable to application for
hundreds or thousands of sequences. Generally, we ex-
plore combinations of different representations/move
sets with two search methods for exploring protein con-
formational space, and combinations of a variety of scor-
ing function "filters" to identify biologically relevant
conformations.

Sampling protein conformational space
We initially start with an all-atom conformation where
the torsion values for residues predicted to be in helix/
sheet by PSIPRED secondary structure prediction [38] are
set to idealised values [33]. The remaining φ/ψ values are
set in an extended conformation. Side chain conforma-
tions are predicted by simply using the most frequently
observed rotamer in a database of protein structures [30].
New conformations are generated by perturbing the exist-
ing conformation at an arbitrary residue by one of two
methods: (i) the torsion values for three residues with
identical sequence from a known structure are used to
modify the current conformation, similar in spirit to that
of Baker and colleagues [39]; (ii) one of possible 14 tor-
sion (φ/ψ) values derived based on the most frequently
occurring torsion values for a given residue in a database
of known structures. The move sets were combined se-
quentially (i.e., where a certain number of iterations con-
sisted of copying torsion values for 3-residue fragments
and the next few iterations would use torsion values from
the 14-state φ/ψ model).

The scoring function for minimisation is primarily a com-
bination of the all-atom function, a hydrophobic com-
pactness function, and a bad contacts function [40]. The
primary search technique we used was a Metropolis Mon-
te Carlo (MC) procedure where conformations are accept-
ed or rejected based on the Boltzmann's equation [41].
Each trajectory was allowed 50,000 iterations, starting
with a high temperature such that 99% of the moves were
accepted for the first 1000 steps and "cooled" linearly un-
til only 1% of the moves were accepted for the last 100
steps.

At particular points in the trajectory (every 1000 steps), a
fragment from another trajectory was copied at random,
similar in spirit to genetic algorithms (GA) strategies
[42,43]. The standard Metropolis criterion would then ap-
ply: i.e., if the selected fragment enhanced the score of the
conformation relative to the previous conformation, it
would be accepted. If not, its probability of acceptance
would be determined by the difference in score between
the current conformation and the previous conformation.
The probability is calculated by the Boltzmann-like equa-

tion  where ∆E is the difference in scores and kT, represent-

ing the product of Boltzmann's constant and temperature,
is set to a value calculated using the standard deviation of
the scores of the first 1000 steps in a given trajectory.

Selecting biologically relevant conformations
The conformations generated were minimised using EN-
CAD [36] and scored using a combination of scoring func-
tions that hierarchically reduces the total number of
conformations produced to one final conformation. The
scoring functions used for the final filtering include the
all-atom function [32], hydrophobic compactness [40], a
simple residue-residue contact function [44], a density-
scoring function that is based on the distance of a confor-
mation to all its relatives in the conformation pool, con-
tact order [45], a secondary structure based scoring
function that evaluates the match between the predicted
structure and the secondary structure of a final energy-
minimised conformation, and standard physics-based
electrostatics and Van der Waals terms [46].

Figure 6
Methodology for ab initio prediction. We start with a
sequence and generate conformations using two different
move sets: fragments from a database with identical
sequence and a 14-state φ/ψ model. Many trajectories are
generated and minimised using two different protocols:
Monte Carlo with simulated annealing and a genetic algo-
rithm search. The minimisation function is primarily an all-
atom conditional probability discriminatory function, a
hydrophobic compactness function, and a bad contacts func-
tion. Once a set of conformations is generated, a hierarchical
filtering technique is applied using many different filters/scor-
ing functions to produce one or a few final conformations.
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Internal testing and comparison of models to the experi-
mental result
We initially ran our algorithms on test sets consisting of
10–20 proteins. To minimise bias of a particular algo-
rithm to a fixed test set, new proteins were added to the
test sets regularly. In all cases where a three-dimensional
model must be compared to an experimental structure, we
use the root mean square deviation (RMSD) between cor-
responding atoms of the prediction and the experimental
answer (usually calculated using the Cα atoms).

Availability of software and decoys
The ensembles of structures that were generated and much
of the software used to generate them are available at  [ht-
tp://compbio.washington.edu]
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