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ABSTRACT As part of the third Critical Assess-
ment of Structure Prediction meeting (CASP3), we
predict the three-dimensional structures for 13 pro-
teins using a hierarchical approach. First, all pos-
sible compact conformations of a protein sequence
are enumerated using a highly simplified tetrahe-
dral lattice model. We select a large subset of these
conformations using a lattice-based scoring func-
tion and build detailed all-atom models incorporat-
ing predicted secondary structure. A combined all-
atom knowledge-based scoring function is then used
to select three smaller subsets from these all-atom
models. Finally, a consensus-based distance geom-
etry procedure is used to generate the best conforma-
tions from each of the all-atom subsets. With this
method, we are able to predict the global topology/
shape for all or a large part of the sequence for six
out of the thirteen proteins. For two other proteins,
the topology/shape for shorter fragments are pre-
dicted. This represents a marked improvement in ab
initio prediction since CASP was first instigated in
1994. Proteins Suppl 1999;3:194–198.
r 1999 Wiley-Liss, Inc.
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INTRODUCTION

Ab initio prediction of protein structure from sequence
can be divided into two major subproblems: (1) sampling
the conformational space of the protein well so that a
significant number of native-like conformations are gener-
ated, and (2) designing a discriminatory/scoring/energy
function that will distinguish between native and non-
native conformations in this sample. Exhaustive enu-
meration is a powerful means of sampling the global
topology,1–3 and all-atom scoring functions have been
shown to be useful in identifying native-like folds from a
range of conformations.4,5 The approach we present, which
uses a combination of hierarchical methods for generating
and selecting structures, is partially successful in solving
both of these problems.

METHODS
Combined Approach for Prediction

Table I gives a list of proteins predicted. For each
protein, all possible self-avoiding compact conformations

were exhaustively enumerated using a tetrahedral lattice
model.1,2 The computation is made tractable by reducing
the chain length to no more than 50 lattice vertices (with
two to three residues per vertex, depending on the size of
the protein). This procedure yielded 10 million to 10 billion
lattice conformations. Of these, up to 40,000 best-scoring
conformations were selected using a simple lattice-based
pairwise scoring function.2

All-atom models were constructed by ‘‘fitting’’ the pre-
dicted secondary structure to the best-scoring lattice mod-
els. The secondary structure prediction was accomplished
by generating 20 multiple sequence alignments of a homolo-
gous set of sequences to the target protein (using a
bootstrapping procedure) and using them as input for
three previously published secondary structure prediction
methods: PHD,5 DSC,6 and Predator.7 The consensus of the
20 predictions for each method was used to assign helical
and sheet residues where all three methods agreed. A
greedy off-lattice build-up procedure with a four-state (f,c)
representation (one state helix, one sheet, two other)8 was
used to minimize the root mean square deviation (RMSD)
between the lattice model and the all-atom model, taking
into account predicted helix and sheet assignments. The
most frequently observed rotamer values in protein struc-
tures were used for constructing side chains. The all-atom
models were refined by applying 200 steps of steepest
descent minimization using ENCAD.9–12

Three subsets consisting of the best 50, best 100, and
best 500 conformations from the set of all-atom models
were selected by a combined scoring function. The com-
bined function consisted of an all-atom distance-depen-
dent conditional probability discriminatory function
(RAPDF),4 a simple residue-level pairwise contact func-
tion (Shell),13 and a hydrophobic compactness function.3

The most frequently observed Ca-Ca distances in each of
the three subsets were used as constraints to a distance
geometry procedure (by the TINKER software suite)14 to
generate up to 36 models. Predicted secondary structures
were once again fitted to the consensus distance geometry
models, the models refined, and four best scoring models,
as evaluated by the all-atom function (RAPDF), were
submitted. The fifth model submitted was the best scoring
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model (evaluated by RAPDF) from the set of all-atom
models without the distance geometry step.

Postprocessing of Models and Experimental
Structures for RMSD Calculation

In some cases, the number of residues predicted was
based on the sequence given and is larger than the number
of residues in the corresponding experimental structures,
which sometimes have missing residues. In these cases,
the models, the conformations sampled, and the experimen-
tal structures were postprocessed for consistency in calcu-
lating the RMSDs, and the numbers given are those
calculated after any postprocessing. The RMSDs also are
generally for the best models among the five that were
submitted, are sequence dependent, and are based on a
global superposition of the coordinates. Residue number-
ing is based on the experimental structures provided to us
by the prediction center.

RESULTS

Table 1 gives the numerical results for the 13 predic-
tions, and Figure 1 illustrates the performance of this
method at CASP3 for the more successful predictions. We
describe the results for all targets briefly and comment on
what went right, what went wrong, and why.

T43/hppk (2)

T43/hppk is a mixed a/b protein. There are a few
fragments between 40 and 50 residues that are predicted
to within 6.0 Å, but the poor RMSDs for the best conforma-
tions that were sampled (10.0 Å), the large size of the
protein (158 residues), and the relatively low accuracy of
the secondary structure prediction (70% Q3) all contribute
to a mostly incorrect prediction.

T46/adg (n-)

We could not adequately sample the conformational
space for T46/adg (we generated 23,120 instead of the
usual 40,000 conformations because of time limitations).
The fact that our lattice representation has difficulty
representing all-b proteins and the weak secondary struc-
ture prediction (67% Q3) leads us to a situation where the
RMSD of the best conformation sampled was 10.1 Å. Given
the sampling, our prediction of 13.9 Å (model 1) is not too
surprising, but in our fourth model, the topology for three
of eight strands is approximately captured (Fig. 1).

T52/cvn (2)

T52/cvn was our first prediction and our sampling was
woefully inadequate given the time constraints for this
prediction. We used the published disulfide information to

TABLE I. List of Targets† Predicted for CASP3

Target Size Class
Walk

lengtha

Number
selectedb

folds

Best all
Ca RMSDc

model (Å)

Best fragment
Ca RMSDd

model (Å) (size)
Ca RMSD
rangee (Å)

SS
Q3f

(%)

(2) T43/hppk 158 a/b 50 40,000 2 14.5 2 6.3 (48) 10.0–19.5 70
(2) T46/adg 119 b 50 23,120 1 13.9 4 6.6 (39) 10.1–19.2 67
(2) T52/cvn 98 b 50 278 2 13.6 4 6.6 (33) 10.6–16.3 50
(2) T54/vanxg 202 a 1 b 51 19,816 3 15.5 3 15.5 (202) — —
(*) T56/dnab 114 a 50 40,000 5 13.0 1 6.8 (60) 6.2–17.8 100
(**) T59/smd3 71 b 38 20,000 2 11.6 2 6.7 (46) 7.4–15.7 80
(**) T61/hdea 76 a 45 22,794 1 10.1 4 7.4 (66) 6.0–14.0 62
(2) T63/if5a 135 b 50 40,000 2 15.1 1 6.4 (35) 10.8–22.0 60
(**) T64/sinr 103 a 50 40,000 5 11.2 5 4.8 (68) 8.0–18.8 90
(*) T65/sini 31 a 29 20,422 2 4.1 2 4.1 (31) 2.4–7.6 90
(*) T74/eps15 98 a 49 37,296 3 11.3 1 7.0 (60) 6.3–16.5 88
(**) T75/ets1 88 a 50 40,000 1 9.8 1 7.7 (77) 6.0–17.0 78
(*) T84/rlzh 30 a — 5 5 1.0 5 1.0 (30) — 82

Average 102 — 47 26,440 — 11.1 — 6.7 (61) 7.6–16.8 77
†For 4 of 13 cases, marked with (**), we correctly predict the topology/shape for all or a large portion of the sequence; for another 4 of 13
cases, marked with (*), we correctly predict the topology/shape for small fragments of the sequence (or these were ‘‘easy’’ predictions), and
there were five cases, marked with (2), where the method did not yield a good prediction.
aIn some cases, sets of tetrahedral lattice conformations were generated with two different walk lengths. The table lists one value, and the
other value, which is sometimes used, is 40. The number of residues per lattice point is simply the protein size divided by the walk length
and varies from 1 (for T65/sini) to 4 (for T54/vanx).
bThe number of conformations for which all-atom models were built and evaluated using the combined scoring function.
cThe Ca root mean square deviation (RMSD) between the best model (of five) and the experimental structure for all the residues in the
protein. The model number is indicated.
dThe Ca RMSDs of the fragments predicted best among the five models (see Fig. 1). The model number is indicated.
eThe range of RMSDs for all of the all-atom conformations sampled.
fThe three-state (helix, sheet, loop) secondary structure accuracy for the prediction that was used to build the all-atom models (except for
T56/dnab, where the assignments were made available to the predictors).
gSome data for T54/vanx are missing because the experimental coordinates were not made available to the predictors; the data shown were
provided by the CASP organizers.
hThis model was so simple to construct that no searching of the conformational space was required.
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Fig. 1. Illustrations of some of the more successful predictions
obtained by our combined approach. In all cases, the experimental
structure is on the left and the predicted model is on the right. The chains
are colored according to sequence order (from the N-terminus in blue to
the C-terminus in red). For six cases (four of these are shown in the figure
and marked [**]), we were able to predict the topology/shape for all or a

large portion of the sequence; for three other cases (two are shown and
marked [*]), we were able to predict the topology/shape for small
fragments of the sequence. The particular model shown is the one of the
five generated that has the Best Fragment Ca RMSD; please refer to Table
1 for the model number in each case.
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limit the number of conformations scored to only 278. The
inadequate sampling (best RMSD was 10.6 Å) and the poor
secondary structure prediction (50% Q3) contribute to a
wrong prediction.

T54/vanx (2)

The experimental coordinates for T54/vanx had not been
released to the predictors at the time of writing, and
therefore it is difficult to ascertain whether there are
regions in the protein that were predicted well or whether
native-like topologies were sampled. This is the largest
protein predicted, and the RMSD (as provided to us by the
CASP organizers) is a high 15.5 Å between our model (3)
and the experimental structure for all the 202 residues.

T56/dnab (*)

T56/dnab is a particularly disappointing misprediction
for two reasons:

1. The secondary structure for this protein was completely
specified.

2. The conformations sampled included four structures
between 6.0 and 7.0 Å RMSD for the 114 residues.

Our scoring function was unable to select any of these
native-like conformations, perhaps because of their scar-
city (1 in 10,000). However, there is some partial success
because fragments of size 60 are predicted to within 7.0 Å
(Fig. 1).

T59/smd3 (**)

T59/smd3 is a 71-residue, eight-stranded b-barrel. The
topology of the last six strands is predicted to 6.7 Å (Fig. 1),
making this one of our successful b-protein predictions.
Part of this can be attributed to the reasonable sampling
(RMSD range of 7.4–15.7 Å for 22,794 conformations)
because of the simple topology and the relatively high
secondary structure prediction accuracy (80% Q3) for a
b-protein.

T61/hdea (**)

T61/hdea is a 76-residue protein with a four-helix core
and a long loop. The topology of the first three helices (66
residues) is predicted accurately, to an RMSD of 7.4 Å
relative to the experimental structure (Fig. 1). However,
the last helix is misplaced, leading to an overall large
RMSD.

T63/if5a (2)

T63/if5a is a complicated two-domain b-barrel. The
lattice models are unable to capture the complicated
topology, leading to inadequate sampling (10.8–22.0 Å
RMSD). Combined with the poor secondary structure
prediction accuracy (60% Q3), this results in an incorrect
prediction.

T64/sinr (**)

T64/sinr is a protein whose sequence is 30% identical to
that of a protein with known structure, but this knowledge
was not used in our ab initio prediction. For the first 68

residues, which form a four-helix bundle, we predict a
conformation of 4.8 Å RMSD to the experimental structure
(Fig. 1), and the remaining 35 residues, which form a
two-helix bundle, we predict to 5.8 Å RMSD. The packing
between the two domains is predicted incorrectly, leading
to high RMSDs both in the sampling and in the final
model.

T65/sini (*)

T65/sini is a two-helix bundle. The helices in the native
structure are noncompact compared to our model. For the
31 residues, the RMSD between the experimental and
predicted structures is 4.1 Å (Fig. 1), which is probably not
significant given the small size and simple packing ob-
served in the protein.

T74/eps15 (*)

T74/eps15 is sampled adequately (30 conformations
within 7.0 Å for 98 residues), and the secondary structure
prediction accuracy is high (88% Q3). Like dnab/t56, our
scoring function is unable to select a conformation with
native-like topology, and the best predictions are 60-
residue fragments to 7.0 Å RMSD, which capture the
topology for three helices (Fig. 1).

T75/ets1 (**)

T75/ets1 is one of our most successful predictions. The
RMSD between our model (1) and the experimental struc-
ture is 9.8 Å for the entire 88 residues and 77 of the
residues (27–103) are predicted to 7.7 Å. Even though the
RMSD is fairly large, the global topology is captured well
(Fig. 1).

T84/rlz (*)

T84/rlz (30 residues) was correctly predicted to be a
single long helix. The model was constructed manually (by
setting the torsion angles to idealized helix values), lead-
ing to a RMSD of 1.0 Å between our fifth model and the
experimental structure. This is not considered to be very
significant.

Computational Issues

The time required for a single prediction is about 1 week
on a single 533 MHz DEC alpha processor. However, the
procedure can be run in a massively parallel manner, and
10 processors in parallel will predict a protein structure of
less than 200 residues in 24 hr.

DISCUSSION

Using the combined hierarchical approach, we see consis-
tent fragmentary and/or topological prediction for most of
the targets we predicted at CASP3. This represents signifi-
cant progress in ab initio prediction relative to CASP1 and
CASP2.

For six proteins (T59/smd3, T61/hdea, T64/sinr, T65/
sini, T74/eps15, and T84/rlz), we predict models that
capture the global topology for all or large portions of the
sequence (Fig. 1). For two others (T56/dnab and T74/
eps15), we predict the correct topology for relatively short
fragments of the sequence. There are four failures (T43/
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hppk, T46/adg, T52/cvn, and T63/if5a), three of which are
all or mostly b proteins and one of which is a mixed a/b
protein. For eight proteins (T59/smd3, T61/hdea, T56/
dnab, T64/sinr, T65/sini, T74/eps15, T75/ets1, and T84/
rlz), native-like topologies (RMSD below 7.6 Å for the
whole sequence) are sampled, but not necessarily pre-
dicted, for all or large portions of the protein (Table 1).

Problems With This Approach

Although the results presented here are encouraging,
the conformations predicted are not really useful for
functional studies.

In most cases where the method fails (T43/hppk, T46/
adg, T52/cvn, and T63/if5a), inadequate sampling appears
to be the major hurdle preventing selection of good ab
initio models. In particular, sampling for all or mostly-b
proteins is worse than that for mixed a-b proteins, which is
worse than for all or mostly-a proteins. This trend is
reflected in the quality of the final model.

Even when native-like topologies are sampled, the large
number of incorrect conformations can overwhelm the
scoring function, resulting in an incorrect final model with
perhaps some correct fragments (T56/dnab and T74/
eps15). In these cases, it is difficult to ascertain whether it
is a failure of the selection procedure or whether the
sample does not include sufficient native-like topologies.
The low resolution of the models also makes it hard to
assess how much of the failure can be attributed to
limitations of the discriminatory function.

Advantages of This Approach

The procedure is mostly automatic and very little hu-
man intervention was used in making the predictions,
including the selection of the final five models submitted to
CASP.

The method is robust with respect to secondary struc-
ture prediction. Even though some of the Q3 percentages
are reasonable (60%–70%), secondary structure prediction
is poor in many of these targets (T43/hppk, T46/adg,
T61/hdea, and T63/if5a) where entire a-helices are pre-
dicted as b-strands and vice versa.

The method is also robust with respect to the details of
the knowledge-based databases used. Database informa-
tion from known protein structures is only used for the
simple and all-atom scoring function and for the secondary
structure prediction. For the rest of the method, no data-
base information is used.

The Road Ahead

In comparison to CASP1 and CASP2, there has been
progress in terms of RMSDs for all the residues and across
several targets. However, a general solution to the struc-
ture prediction problem has not been found. Even in ‘‘good’’
cases, i.e., where native-like topologies are observed in our
sample space, the best conformations are between 6.0 and
8.0 Å RMSD relative to the experimental structure for
60-residue fragments. Approaches that sample closer to
the native structure are necessary for detailed all-atom
scoring functions to discriminate effectively. Combining
exhaustive search methods with predicted constraints,15

nonexhaustive knowledge-based sampling methods,16 and
better secondary structure prediction (e.g., results of the
Jones group at CASP3) is a possible path for future work.

Availability of Software and Decoys

The ensembles of structures that were generated and
much of the software used to generate them are available
at ,http://dd.stanford.edu. and ,http://www.ram.org/
computing/ramp/ramp.html., respectively. The TINKER
suite of programs, used for the consensus distance geom-
etry, is available at ,http://dasher.wustl.edu/tinker/..
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