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Abstract
Background: The RNA world hypothesis posits that the earliest genetic system consisted of informational RNA 
molecules that directed the synthesis of modestly functional RNA molecules. Further evidence suggests that it was 
within this RNA-based genetic system that life developed the ability to synthesize proteins by translating genetic code. 
Here we investigate the early development of the translation system through an evolutionary survey of protein 
architectures associated with modern translation.

Results: Our analysis reveals a structural expansion of translation proteins immediately following the RNA world and 
well before the establishment of the DNA genome. Subsequent functional annotation shows that representatives of 
the ten most ancestral protein architectures are responsible for all of the core protein functions found in modern 
translation.

Conclusions: We propose that this early robust translation system evolved by virtue of a positive feedback cycle in 
which the system was able to create increasingly complex proteins to further enhance its own function.

Reviewers: This article was reviewed by Janet Siefert, George Fox, and Antonio Lazcano (nominated by Laura 
Landweber)

Background
Proteins are the primary functional biomolecules of life.
Protein synthesis is directed by translating the genetic
code from informational RNA molecules. The RNA
world hypothesis proposes that a simple RNA-only
genetic system preceded the modern one. In the RNA
world model, RNA genes direct the synthesis of func-
tional RNA molecules rather than proteins [1]. This sys-
tem may have arisen from robust protometabolic
networks [2] and probably remained dependent on inor-
ganic catalysts [3,4] and short prebiotic peptides [5] to
complement the limited functional capacity of RNA.
Early analyses of bacterial and archaeal genomes showed
that genes and gene clusters associated with transcription
and translation are indeed highly conserved while DNA
replication is not [6,7].

The onset of protein translation allowed RNA genes to
exert a greater degree of biochemical control by encoding
the synthesis of functional proteins. The modern transla-

tion system reflects this history as one of the few meta-
bolic processes dominated by RNA [8-10]. An amino acid
sequence is encoded on messenger RNA (mRNA) and
translated to protein by transfer RNA (tRNA). The ensu-
ing peptide elongation is catalyzed by functional RNAs in
the ribosome (rRNA).

Several lines of evidence suggest that the onset of pro-
tein translation predated the establishment of the DNA
genome [5,11]. The synthesis of deoxyribonucleotides,
for example, was probably not achievable under prebiotic
conditions and thus required enzymatically catalyzed
ribonucleotide reduction [5,12]. In contrast, the prebiotic
syntheses of both ribonucleotides [13] and amino acids
[14] can occur without catalysis from biological enzymes.
We note that many progressions for the origin of the
genetic system have been proposed [15], however the
strongest evidence supports the model described above
(and illustrated in Figure 1).

The modern translation system relies on proteins to
carry out several key functions. Ribosomal proteins play
an important role in supporting ribosome structure and
promoting translation. GTP-hydrolyzing regulatory fac-
tors help direct the initiation, elongation, and completion
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of translation [16,17]. Proteins are also required to charge
tRNA molecules with the appropriate amino acid [18]
and adjust their binding affinity to the ribosome [19].
Here we examine the early evolution of these proteins by
a survey of conserved structural architectures.

Modern proteins are composed of one or more archi-
tectural folds that can function and evolve independently
[20]. Protein and RNA fold modules are highly conserved
in evolution [21,22]. In contrast, the evolutionary conver-
gence of two unrelated lineages toward a common fold is
thought to be rare [23]. Convergent evolution attributable
to functional similarities has been observed at the level of
local structural motifs, but in these cases the original
overall fold architecture is maintained [24]. Thus, nonho-
mologous proteins that share a common structural topol-
ogy will most likely represent an ancient evolutionary
relationship that is too distant to be detected by sequence
similarity [25]. Recent work by Wang et al. [26] estab-
lished a phylogeny of protein fold architectures based on
the distribution of these folds across all completed
genomes. We apply ancestry values derived from this
phylogeny to the experimentally determined fold archi-
tectures present in translation proteins.

Results and discussion
Structural evolution of translation proteins
We first observed and compared the structural evolution
of three functional categories of translation proteins:
translation regulatory proteins, ribosomal proteins, and
tRNA-related proteins. For a given functional category,
protein folds and their respective phylogenetic ancestries
were identified through a combination of data from the
Gene Ontology database (GO) [27], the ASTRAL data-
base [28], and the Molecular Ancestry Network database
(MANET) [29]. These data are available as additional
online material (Additional file 1).

We observed the structural evolution of each category
of translation proteins by calculating its fold expansion as
a function of ancestry value. Nonredundant sets of all
folds found in all proteins were created for each category.
The phylogenetic ancestry value of each fold was calcu-
lated by Wang et al. [26] as the number of nodes from
that fold to the root node divided by the number of nodes
from the most recent fold to the root node. The ancestry
value can be considered a proxy for relative age where 0%
is the most ancient value and 100% is the most recent
value. Fold expansion is calculated for a given functional

Figure 1 A popular model for the development of the genetic system. The RNA world hypothesis proposes that the first genetic system involved 
informational RNA molecules that encoded the synthesis of modestly functional RNA molecules [1]. Protein translation developed during this period 
leading to the RNA-protein world. Finally, protein enzymes produced deoxyribonucleotides through ribonucleotide reduction. The availability of de-
oxyribonucleotides led to the establishment of the DNA genome and the modern genetic system [5].
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category as the number of folds equal to or less than a
given ancestry value divided by the total number of folds.
Fold expansion can be considered a proxy for functional
sophistication, where 100% represents the current level of
sophistication. Figure 2 shows fold expansion plotted as a
function of ancestry and thus illustrates the increase in
sophistication over time for the three categories of trans-
lation proteins.

Three additional datasets are analyzed for comparison.
Recently, a superimposition of metabolic pathways was
used to identify a canonical TCA cycle [30] that is pro-
posed to reflect the core metabolism of the Last Universal
Common Ancestor to all extant life (LUCA). The
enzymes that catalyze the supposedly ancient reactions
within this canonical TCA cycle were used to illustrate an
extremely accelerated fold evolution. In contrast, the full
set of immune system proteins was used to demonstrate a
slower evolutionary expansion given that this category is

unlikely to have any relevance to the origin of life. The
overall expansion of the proteome is also shown.

All three categories of translation proteins show a sig-
nificantly earlier structural expansion than the expansion
of the immune system proteins or the whole proteome
(Figure 2). tRNA-related proteins show the earliest struc-
tural expansion followed by translation regulatory fac-
tors, then ribosomal proteins. The earliest fold catalyzing
ribonucleotide reduction is found at an ancestry value of
19%. This ancestry value is used to mark the transition
from an RNA-protein system to a DNA-RNA-protein
system. Wang et al. [26] determined that the first folds
found only in a single taxonomic domain appear at 40%
ancestry. This ancestry value is used to identify the diver-
gence of LUCA into the three domains of life. Thus we
are able to classify three periods of proteome develop-
ment: the RNA-protein world (0%-19% ancestry), the era
of LUCA (19%-40% ancestry), and the era of modern biol-
ogy (40%-100% ancestry). Quantitative features of fold

Figure 2 Protein fold expansion plotted as a function of ancestry. Fold expansion is calculated as the cumulative fraction of folds less than or 
equal to a given ancestry value. Ancestry values for fold architectures were derived from the phylogenetic tree of all folds by Wang et al. [26] and are 
equal to the number of nodes from a given fold to the root of the phylogenetic tree divided by the number of nodes from the most recent fold to the 
root of the tree. Fold expansion can be considered a proxy for sophistication while ancestry value can be considered a proxy for evolutionary time. 
For reference, the same analysis is performed on canonical TCA cycle enzymes, immune system proteins, and the whole proteome (see Results and 
discussion). The first fold of a ribonucleotide reductase catalytic domain appears at 19% ancestry, while the first fold found in only one taxonomic 
domain of life appears at 40% ancestry. We use these values to approximate ranges in ancestry value that correspond to the RNA-protein world, the 
era of the Last Universal Common Ancestor (LUCA), and the era of modern biology. These results reveal a rapid expansion of translation protein archi-
tectures before the divergence of LUCA and even before the establishment of the DNA genome. Quantitative features of these results are presented 
in Table 1.
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expansion within these three periods are summarized in
Table 1. This analysis reveals an early development of
translation proteins and a particularly rapid development
of tRNA-related proteins during the RNA-protein world
and the era of LUCA.

Functional capacity of the primitive translation system
Nine out of the ten most ancestral fold architectures were
found in translation proteins. The molecular functions
imparted by these folds were annotated through a combi-
nation of data from the NCBI Conserved Domains Data-
base (CDD) [31] and literature review. A summary of
these functions is presented in Figure 3. A summary of
the genes in which these folds are found and a fully anno-
tated list of these functions are available as additional
online material (Additional files 2 and 3, respectively).
Nearly all of these folds converge on four basic functions:
nucleotide-phosphate transfer, RNA binding, protein
binding, and RNA modification. Amongst these folds are
two noteworthy catalytic domains. The most ancestral
fold (P-loop containing hydrolase) is ubiquitous in regu-
latory proteins as a GTPase domain [32]. The tenth most
ancestral fold (adenine nucleotide alpha hydrolase-like

fold) is found as the conserved catalytic domain of all
class I tRNA synthetases [33]. These ancestral folds were
likely present as single domain proteins early on in the
RNA-protein world. A model of translation protein func-
tions during the RNA-protein world was developed using
these annotations (Figure 4).

The majority of these ancestral fold functions promote
the modern translation system through binding to other
components of the translation apparatus. Five ancestral
folds are present as single domain ribosomal proteins
with the ability to bind RNA and other proteins (DNA/
RNA binding 3-helical bundle, Ferrodoxin-like fold, Flav-
idoxin-like fold, Ribonuclease H-like motif, and Oligonu-
cleotide/oligosaccharide binding fold). Three ancestral
folds found in regulatory factors also have the ability to
bind RNA (DNA/RNA binding 3-helical bundle, Ferro-
doxin-like fold, and Oligonucleotide/oligosaccharide
binding fold). In one case, the fold simultaneously binds
tRNA and mRNA (Ferrodoxin-like fold). In another case,
the fold simultaneously binds tRNA, mRNA, and rRNA
(Oligonucleotide/oligosaccharide binding fold). These
folds likely played an important role in stabilizing the

Table 1: Quantitative features of fold expansion curves presented in Figure 2.

Statistic Protein category
ancestry ≤ 19%

(prior to DNA genome)

ancestry ≤ 40%
(prior to divergence 

of LUCA)
ancestry ≤ 100%
(all protein folds)

tRNA-related proteins 41.5% 72.2% 100%

Regulation of translation 37.5% 50.0% 100%

Final fold Ribosomal proteins 25.0% 37.5% 100%

expansio
Canonical TCA enzymes 50.0% 85.7% 100%

Immune system proteins 18.2% 27.3% 100%

Whole proteome 6.5% 21.0% 100%

tRNA-related proteins 4.2% 16.7% 70.6%

Regulation of translation 3.9% 12.0% 60.3%

Area Ribosomal proteins 2.5% 8.8% 62.1%

under
curve Canonical TCA enzymes 4.7% 18.0% 77.0%

Immune system proteins 0.4% 5.0% 35.1%

Whole proteome 0.5% 3.3% 40.3%
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Figure 3 A summary of functional annotation of the most ancestral translation protein folds. Nine of the ten most ancestral folds identified by 
Wang et al. [26] are present in translation proteins. The specific functional roles of these folds converge on four general categories: high energy phos-
phoryl transfer, RNA modification, RNA binding, and protein binding. Exceptions are aminoacylation by tRNA synthetase and tRNA splicing by ribo-
somal protein S28e. Taken together, the functions imparted by these nine most ancestral folds represent all of the central protein functions in the 
modern translation system (Figure 4). A summary of the genes in which these folds are found is available as Additional file 2. A detailed annotation of 
functions imparted by these folds is available as Additional file 3.
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ribosome and coordinating the mRNA:tRNA:rRNA com-
plex in the primitive translation system.

Many ancestral fold functions also contribute to the
fidelity of the modern translation system. In the modern
translation apparatus, codon-anticodon mismatches
cause the ribosome to take a suboptimal structural con-
formation and the elongation factor GTPase to hydrolyze
additional GTPs [19]. These alterations generally force a
mismatched tRNA to dissociate from the translation
apparatus without adding its amino acid to the peptide
chain. tRNAs are regularly modified by the addition of
small organic molecules in order to give each tRNA the
same binding affinity to the rRNA, thus assuring the
same proofreading potential for each amino acid [19].
The rRNA binding, GTPase, and RNA modifying func-
tions imparted by these ancestral folds may have played
an important role in allowing the primitive translation
apparatus to prevent incorrect codon-anticodon binding.

It is possible that these results may be confounded by
the recent exaptation of translation protein functions
from an unrelated molecular network [34]. Given, how-
ever, that translation is a highly conserved and ancient
process [35], it is more likely that protein functions would
originate within the translation network and be exapted

to another more recent network rather than the other
way around. Furthermore, these most ancient proteins
would probably have had a generalized function. Specifi-
cation to a single network node would have come later in
the development of the proteome. In addition, the major-
ity of these folds are represented by a number of domains
with disparate functions (see Additional file 3) and thus
are reasonably robust such that we can discount exapta-
tion as having only a minor effect on our analysis.

Conclusion
This survey of translation protein folds demonstrates that
all of the major functions required for a stable and capa-
ble translation system were present very early on during
the development of the RNA-protein world. Our analyses
suggest that translation proteins underwent major evolu-
tionary expansion well before the first species diverged
from LUCA and even before the DNA genome was estab-
lished. The original RNA-only translation system
undoubtedly became increasingly efficient and accurate
due to enhancement by the peptides it produced. This
enhanced translation system would allow for the synthe-
sis of more complex proteins. These superior proteins
could once again act on the translation system to further
improve its own functional capabilities. The initial onset
of translation could thus have produced a positive feed-
back cycle that accelerated its own evolution (Figure 5).
The transition from a primitive translation system to a
sophisticated one may have been not only rapid but also
deterministic.

Methods
Acquiring datasets
Fold architectures from translation proteins and refer-
ence category proteins were identified using the Gene
Ontology database (GO) [27,36] in combination with
hand annotation. GO results were filtered for proteins
with known structures entered in the Protein Data Bank
(PDB) [37,38]. The PDB IDs for each protein were cross-
referenced with the 40% redundant ASTRAL database
[28,39,40] in order to identify the folds within each pro-
tein. The fold data were then cross-referenced with fold
ancestry values from the Molecular Ancestry Network
(MANET) database [29,41]. Separate datasets were cre-
ated for three functional categories of translation pro-
teins and three reference categories (see Results and
discussion). These datasets are available as Additional file
1. For each functional category, a nonredundant set of all
folds found in all proteins was created for fold expansion
analysis.

Analysis
Ancestry values were derived by Wang et al. [26] using
their phylogenetic tree of all protein folds. The ancestry

Figure 4 A model of protein enhancement in the primitive trans-
lation system. The protein functions illustrated here are imparted by 
the earliest translation protein fold architectures and are summarized 
in Figure 3. A) The ancestor of the class I aminoacyl tRNA synthetase 
(ARS) catalytic domain charges tRNAs with amino acids (lowest ances-
try value = 5.7%). B) An ancestor of a noncatalytic ARS domain binds 
tRNA anticodon and interacts with protein "A" during aminoacylation 
of the tRNA (lowest ancestry value = 1.3%). C) Ancestors of RNA modi-
fication enzymes add small organic molecules to tRNA and rRNA to ad-
just mutual binding affinity (lowest ancestry value = 1.9%). D) 
Ancestors of regulatory factor domains bind mRNA and tRNA to stabi-
lize their interaction during peptide chain initiation and elongation 
(lowest ancestry value = 1.3%). E) Ancestors of the regulatory factor GT-
Pases drive peptide elongation forward and sensitize the ribosome to 
codon-anticodon mismatches (lowest ancestry value = 0.0%). F) An-
cestors of ribosomal proteins are able to bind rRNA and one another to 
stabilize the primitive ribosome complex (lowest ancestry value = 
0.6%). These functions were all present before 6% ancestry, indicating 
that a robust translation system existed early on in the RNA-protein 
world.
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value is equal to the number of nodes from a given fold to
the root of the tree divided by the number of nodes from
the most recent fold to the root of the tree. For each func-
tional category, fold expansion was calculated as the
cumulative fraction of folds with respect to ancestry
value. That is, at a given ancestry value, the fold expan-
sion is equal to the number of folds with an ancestry
value less than or equal to the given ancestry value
divided by the total number of folds in the functional cat-
egory. Functional annotation of folds was performed by a
combination of NCBI Conserved Domains Database
(CDD) [31,42] searches and literature review.

List of abbreviations
ARS: Aminoacyl tRNA Synthetase; CDD: Conserved
Domains Database; GO: Gene Ontology; LUCA: Last

Universal Common Ancestor; MANET: Molecular
Ancestry NETworks database; PDB: Protein Data Bank.
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After the methods of Wang et al, [26] they utilize a com-

Figure 5 A positive feedback loop mechanism for the early development of the translation system. At each evolutionary stage, the stability 
and fidelity of the translation system is enhanced by the peptides it produces. This new superior translation system is able to synthesize proteins of 
even greater functional capability that can, in turn, act on the translation system to further enhance its own functional capability. This mechanism may 
have been a central driving force in the transition from the RNA world to modern cellular life.
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tein binding and RNA modification. They provide an
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The writing is straightforward and engaging to read. It
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standing of the importance of the early development of
translation during the final stages of transition to the
modern post-LUCA world and is significant and pending
significant revision is worthy of publication. The authors
examine ribosomal components from the perspective of
fold ancestry using an approach that has previously been
pioneered by Gustavo Caetano-Anolles, Jay Mittenthal
and their colleagues [26]. In particular, the extent to
which the ten folds with the lowest ancestry scores are
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ciated with the key transitions between the early RNA
World, LUCA, and modern biology. If these are reason-
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table available as Additional file 1.
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not amenable to "expansion" because they actually had
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such as L3 and L4 have folds that are seldom if ever used
elsewhere but nevertheless these proteins and hence their
folds are likely to be very ancient (see [43]). Because these
folds are universal among ribosomal proteins in all three
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scores but will not necessarily be among the lowest where
they might actually belong from the historical perspec-
tive. Thus, the reader should be cautioned about this
potential limitation of the ancestry values.
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"peptidyl transfer". This apparently refers to one of the r-
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Author's Response
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In other places, specific proteins are mentioned, e.g. "S6
binding". It would greatly simplify things if an additional
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tional file 2. This table is actually larger than Figure 3
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found in an enzyme does not necessarily impart the cata-
lytic function of the enzyme.

Reviewer's Comments
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the figure entitled "protein fold expansion plotted as
function of ancestry" was obtained is rather confusing. A
stronger explanation is needed as to what data was used
to construct this figure and how it was utilized;

Author's Response
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tion of this analysis in both the Results and discussion
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tion entitled "functional capacity of the primitive transla-
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found in regulatory factors have the ability to bind RNA."
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Author's Response
We have amended this discussion and now list the spe-
cific folds to which we refer when making these state-
ments.
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Reviewer's Comments
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of modern cells in a very original fashion. What the
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the relative antiquity of basic cellular processes in the
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cise dating. This approach is somewhat similar to the
estimates of relative ages determined by paleontologists
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This work has been written in a rather sober style that
may lead to some misunderstandings. Many would
object, for instance, to the claim that "Proteins are the
primary functional biomolecules of life", since the same
would apply to lipids, for instance.

Author's Response
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chemical energy, and intercellular communication. How-
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The title, in fact, may reflect a slight confusion on what is
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Reviewer's Comments
Goldman et al make a rather splendid one-paragraph
summary of what may have been an RNA world depen-
dent on inorganic catalysts and prebiotic polypeptides,
and that protein synthesis first evolved in an RNA world.
Indeed, as underlined by Kumar and Yarus [45], four of
the central reactions involved in protein biosynthesis are
catalyzed by ribozymes, and their complementary nature
suggests suggestive that they may have first appeared in
the RNA world. However, this is independent from the
proposal that translation predated the emergence of DNA
genomes. Moreover, while it is true that the elegant syn-
thesis of pyrimidine ribonucleotides reported by Powner
et al. [13] has led to new understanding in the chemistry
of nucleobases under possible primitive conditions, the
appearance and accumulation of the polyribonucleotide
molecules required for the RNA world from a prebiotic
soup remains an open question. This issue is, of course,
further complicated by the chemical lability of RNA mol-

ecules. The nature of the predecessor(s) of the RNA
world (if such predecessors actually existed) are com-
pletely unknown and can only be surmised.

Author's Response
Dr. Lazcano makes a good point that the prebiotic syn-
thesis of RNA molecules is not requisite for the validity of
the RNA world hypothesis. What's more, it would be
hubristic to maintain that RNA synthesis in the RNA
world occurred exactly as demonstrated by any labora-
tory synthesis. That said, we only mention this work as
one of several independent lines of evidence supporting
the notion that RNA preceded DNA as the central
genetic molecule.

Reviewer's Comments
The paper by Goldman et al is strongly dependent on two
major assumptions. One of them is what the authors have
termed "ancestry value", and I find their approach valid.
The other major premise is that the earliest protein fold
involved in ribonucleotide reduction has an ancestry
value of 19%. In fact, the evolutionary conservation of
components of the translation apparatus, together with
that of other molecules involved in RNA metabolism [46]
supports the contention that proteins first evolved in sys-
tems in which RNA played a major role in catalysis. How-
ever, Goldman et al may want to consider that it has also
been suggested that DNA genomes predate the emer-
gence of translation, i.e., that the evolutionary sequence
was actually RNA world -> a RNA+DNA world -> DNA/
RNA/protein world. While I personally consider this
unlikely, mention to this possibility should be given in the
text.

Author's Response
These points are well taken. An extensive review of all
proposed sequences for the origin of the genetic system is
beyond the scope of this article. We suggest Dworkin et
al. [15].

Reviewer's Comments
In contrast with other energetically favorable biochemical
reactions (such as hydrolysis of the phosphodiester back-
bone, or the transfer of amino groups), the direct removal
of the oxygen from the 2'-C ribonucleotide pentose ring
to form the corresponding deoxy-equivalents is a ther-
modynamically much less-favored reaction. This is a
major constraint that strongly reduces the likelihood of
multiple, independent origins of biological ribonucle-
otide reduction, a possibility that will raised by some. In
fact, although the demonstration of the monophyletic
origin of ribonucleotide reductases (RNR) is greatly com-
plicated by their highly divergent primary sequences and
the different mechanisms by which they generate the sub-
strate 3'-radical species required for the removal of the 2'-
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OH group. However, sequence analysis and biochemical
characterization of RNRs from the three primary biologi-
cal domains has confimed their structural similarities,
which speaks of their ultimate monophyletic origin. This
supports the contentions and conclusions made by Gold-
man et al., whose paper I strongly recommend for publi-
cation.

Reviewer comments on the final manuscript
Dr. Janet Siefert

This looks good to me and I agree to publishing as
revised.

Dr. George Fox
Fine with me. Really like Additional file 2.
Dr. Antonio Lazcano
I feel perfectly happy with the changes and comments

you have made. I would be very happy to see this paper
published as soon as possible.
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