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Abstract

Integration of large and diverse biological data sets is a daunting problem facing systems biology researchers.
Exploring the complex issues of data validation, integration, and representation, we present a systematic
approach for themanagement and analysis of large biological data sets based on datawarehouses. Our system
has been implemented in the Bioverse, a framework combining diverse protein information from a variety of
knowledge areas such as molecular interactions, pathway localization, protein structure, and protein
function.
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1. Introduction

As high-throughput and other large data sets are generated, the
ability of researchers to organize and analyze these data will deter-
mine the science that can be accomplished. Successful integration
of diverse data sources provides novel insight into biological pro-
cesses. For example, the combination of data sets has been used to
discover novel protein–protein interactions in the galactose utili-
zation pathways of yeast (1, 2). In the Bioverse, the application
described here, proteins have been annotated with functional
descriptions by combining the existing and predicted interaction
networks and the existing functional annotations (3).

Integrating biological resources pose many problems for
researchers. Resources are designed and developed with a specific
user community in mind and, with this specialization, have devel-
oped a particular data focus, storage format, and query interface.
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Developing tools to utilize these resources demands both an
investment of time and often specific knowledge of the resource.
Objects of interest have different identifiers in different contexts,
complicating accurate integration. Independent projects collect
different information for similar data sets, and may use different
standards of measurement. The query interfaces provided for the
resource may be restrictive, not allowing for novel uses. For exam-
ple, using web sites for blast queries to find similar proteins is
reasonable for a handful of interesting proteins, but for a large
data set it is easier to perform the queries against a local database.

The focus of many biological databases is necessarily narrow,
either focused exclusively on single organisms, such as Wormbase
(4), databases of structures (5, 6), or pathways (7). Manually
integrating the results from many data sources may be feasible
for focused questions or small studies, but is time-consuming for
large data sets. Several projects have attempted to solve this pro-
blem, acting as an intermediary between databases, thereby solving
the problem of integration; however, since these often work
through the interfaces provided, the throughput of this approach
is limited. Services such as BioMoby (8), REMORA (9), and the
Bioinformatics Resource Manager (10) successfully integrate a
variety of data sources and bioinformatics tools. These are excel-
lent resources for small queries across many different databases.

For larger projects, we instead integrate the entire resource.
We begin with the raw data provided by the resource maintainers,
and develop our own storage system integrated with other data
sources based on data warehousing principles.

Data warehouses are an approach to data integration and
management, which is used for a variety of problem domains. In
addition to maintaining a highly flexible storage system for data,
data warehouses allow for the expression of complex relationships
and ease the construction and execution of complex queries.

The solutions developed in the Bioverse (11) integrate a wide
variety of biological data sources, allowing for exploration and pre-
diction of functional, structural, and sequence-based data analysis.

2. Data
Warehouses

Data warehouses organize data for analysis and data mining appli-
cations. Although they are built on relational database technology,
data warehouses differ from traditional online transaction proces-
sing (OLTP) databases. Instead, they are designed to support
online analytical processing (OLAP). OLTP systems typically sup-
port many concurrent users inserting, deleting, and modifying
small amounts of data. OLAP systems provide management and
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processing of multidimensional data for analysis. The structure
and organization of the data models are different for each applica-
tion type. Data warehouses are built on an OLAP model. An
excellent review of data warehouses is Kimball (12).

2.1. Relational

Databases

At the center of the data management system is the relational
database. Relational algebra was introduced by Codd (13). A
large software industry based on his work quickly appeared, and
a query language based on relational algebra, Structured Query
Language(SQL), has become the standard for most commercial
relational databases.

For our purposes, a database is a collection of tables, indexes,
relations, and functions. The tables are collections of objects with
identical attributes. The attributes are represented as the columns of
the tables, and the objects are stored as the rows of the table. Data
indexing and custom database functions optimize the access pat-
terns. Interactions with the system are based on transactions, which
guarantee the data integrity in the face of unexpected system or
process failures. Transactions represent a fundamental atomic action
in the database. In the event of an error a transaction is aborted and
all changes can be rolled back to assure data consistency.

2.2. Dimensional

Models

As specializations of relational databases, the distinguishing fea-
ture of a data warehouses is the organization of the data. Tradi-
tional OLAP database design methodology focuses on normalized
tables. Normalization provides logical separation of data, moving
all redundant data to tables, which are referenced as foreign keys.
Since the activity in these databases consists of many small transac-
tions, normalization localizes the effects of changes on the data-
base. This design goal is relaxed for data warehouses that have
different requirements. Normalization is sacrificed for expressive
and efficient queries across large data sets.

Query writing for the dimensional model is straightforward.
Queries can easily be constructed, since the relationships between
tables are simple and designed for flexibility. Queries against the
central fact table will use filters on the linked dimension tables to
narrow the focus of the query.

Using a data warehouse provides several benefits. The
approachmakes the information accessible tomore general queries
than traditional data schemas, and it is flexible with changes and
updates to the underlying data model having minimal impact on
the datamodel organization.New data types can be addedwithout
disturbing the existing table structure, and new dimensions can be
added to a fact with minimal disruption.

2.2.1. Facts Facts are the data points of the system. They are the generated or
computed measurements that are the focus of the representation,
and are defined in terms of the measurement conditions and
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parameters. Each fact type is stored in a corresponding ‘‘Fact
Table’’. Fact tables are large, many containing millions of rows.
Several columns of the fact table will be foreign keys, describing in
detail ‘‘dimensions’’ of the facts. Other columns will be numeric or
categorical data, the ‘‘measures’’ of the fact. The redundancy of
storing most of the data in a large central table, with a handful of
satellite tables, allows for flexibility at the cost of some redundancy.
As an example of a fact table, consider the molecule_sequence
table of Fig. 23.2.

2.2.2. Dimensions Dimensions represent the complex attributes of the facts. These
columns of the fact table are pointers to other tables or foreign
keys. These are the features of facts that themselves have many
features, which would be useful query filters. The features are
stored in ‘‘dimension tables’’ that describe a particular feature of
the fact in detail. These tables rarely change, and encapsulate a
small set of specific data.

2.2.3. Measures Measures are the parameters that make up the facts. These are
discrete values and are usually numeric and additive. Being additive
allows for summary queries on the fact table. Simpler then dimen-
sions, these do not have associated attributes. These are simple
columns of the fact table.

2.2.4. Star Schemas This organization yields a ‘‘star schema’’ with the fact table at
the center, surrounded by many dimension tables. These struc-
tures are the goal of data warehouse design. While not highly
normalized like many database designs, the star schema allows
for complex queries to be made over fact tables efficiently.
Filters on the associated dimension tables and measures provide
a flexible constraint-based search system, which can adapt to a
wide variety of questions, allowing researchers to identify
and isolate relevant facts of interest. In some cases the star
schema may have a depth of more than a single table. These
snowflake schemas, although sometimes necessary, should be
avoided, as they make query writing complicated and can impact
performance.

A data warehouse will contain several fact tables, which may
share dimensions. Each fact table and the associated dimensions
are considered a distinct ‘‘data mart’’. Generally, the data ware-
house will consist of several independent data marts, which
have an independent focus, but which share a few dimension
tables.

There are many efforts to standardize data representation
in systems biology. Systems Biology Markup Language
(SBML) (14) is a data exchange format designed for pathway
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and network models. Another particularly successful example is
the PSI-MI (15) format for interaction data sets. In the cases
where a well-defined data specification exists, it is easier to
design the database tables with the given specification as a
guide. While this method may not provide a true warehouse
design, it is a step toward the goal of integration and effi-
ciency. The staging data of the Bioverse, for example, closely
mirrors in structure the PSI-MI format.

3. Data Warehouse
Construction

Development of the data warehouse from source data to com-
pleted database is an integrated process which includes both the
development of a data model and the development of the tools
required to load large quantities of data.

3.1. Model Design

3.1.1. Facts and Granularity

The first decision to be made in model design is the focus of the
fact tables. Collecting and storing data at the wrong resolution will
impact the ability of the warehouse to answer research questions. If
highly specific data are collected, it may be impossible to construct
queries on relevant aggregates. On the other hand, queries will not
be able to filter well if the fact tables or the dimension tables are too
general.

3.1.2. Dimensions The characteristics of the fact table are stored in the dimension
tables. The choice of columns in the dimension tables deter-
mines the queries that are supported. Verbosity and redundancy
are acceptable since support for rich analysis is the goal.
Although storage space is a consideration for large databases,
the dimension tables even without normalization will not repre-
sent a major storage problem. Typically, the fact tables that are
relatively compact will have orders of magnitudes more rows
than dimension tables.

3.2. Extracting,

Transforming, and

Loading

The migration of data from its native source format into a ware-
house is commonly referred to as the Extraction, Transformation,
and Loading step (ETL). Data can be extracted from other data-
bases or text files.

The design and implementation of ETL tools is one of the
most time-consuming aspects of data warehouse development.
Complex rules and transformations must be applied and errors
must be dealt with intelligently. Many of these steps take place in
a staging area of the warehouse. Fig. 23.1.
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3.2.1. Extraction Programs process the source data, extracting the relevant informa-
tion and filtering data that will not be used or have already been
loaded. The data will be moved to either text files or to a separate
area of the database, depending on the transformation steps
necessary.

3.2.2. Transformation Transformations cover many different facets of data manage-
ment and are often the most complex part of the ETL process.
A variety of operations are carried out in the transformation
step. Validation and verification ensure that the data are well
formed and adhere to any range or value constraints and that, if
attributes are referenced, new attributes of the data can be
computed based on the existing data. Data can be grouped
and merged or split to provide for data at a more appropriate
scale. Lookups can be made against a database to fill in a variety
of columns such as foreign key values, or unique ids generated
by the database.

Fig. 23.1. The ETL process. (1) Data sources such as downloaded versions of projects, and the results of bioinformatics

tools that have been run against local data sets. (2) All of these data are extracted from their original storage formats and

parsed. (3) The data are transformed. Additional fields are calculated, lookups to the database are made, and data sets are

validated against existing data. (4) The data are loaded in the data warehouse. (5) The data exist in a set of data marts,

which are accessed from a range of applications and analytical tools.
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3.2.3. Loading Finally, when all of the data are prepared, they are loaded into the
data warehouse. This step is optimized for speed. Lookups in the
database are avoided, having been accomplished in the transfor-
mation step.

3.2.4. Metadata It is important to keep track every piece of data during processing.
In the Bioverse we track a number of features of data including its
source, what transformations have been carried out, any errors or
warnings encountered, time required to process, and more. This
metadata provides important information that helps with data
management. In our case this is stored in the database where all
the ETL tools responsible for data processing can log activity in
relation to the data sets they operate on.

4. Bioverse Model
Design

The Bioverse includes a variety of information types as well as
sources. Interaction data, functional annotations, structure classi-
fication, and sequence similarity data types are present. Each type
of data requires unique tools for ETL as well as distinct storage in
the staging area and the warehouse. Here we will look at a handful
of tables and discuss the design choices that were made.

4.1. Sequence Data Sequence data is stored in the molecule_sequence table
(Fig. 23.2), which contains information about the type of the
sequence as well as dimensions about the source of the sequence.

Fig. 23.2. A portion of the molecule_sequence data mart. The molecule sequence table

is the central fact. There are three-dimension tables shown, taxon,

molecule_type, and alphabet. Each of these has many interesting features,

which can be used to limit searches on the molecule_sequence table. Addition-

ally, the molecule_sequence table includes several measures, such as seq_len

shown as the last visible column.
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A number of indices are also created on the columns of the
sequence data and the associated dimensions to accommodate
fast queries of features. The MD5 hash of the sequence is stored
for fast exact matches, along with a hash of the first 10 and the
reverse of the last 10 residues in the case of proteins for fast
matching of the start and end of sequences.

4.2. Taxonomy Data: A

Hierarchy Example

Hierarchical data occurs throughout the Bioverse. Representation
of these structures is particularly difficult in relational databases.
The choice of representation scheme depends on the relevant
queries. The most straightforward storage solution is to store all
parent–child relationships of the hierarchy. This is efficient in
storage space, but only allows for a narrow range of queries
about table structure. Different table structures are more useful
for queries about depth and relationships between entities in the
hierarchy. Here we present an approach for storing hierarchical
data in the database, which is based on the topological closure of
the paths in the hierarchy. This storage mechanism, which is
relatively large and expensive to compute, provides a fast mechan-
ism for a wide variety of hierarchical queries. This approach is
described in Chapter 5.6 of Kimball (12). Several dimensions in
the Bioverse are structured in hierarchies including the Gene
Ontology (16), SCOP (17), and the NCBI taxonomy database
(18). In each case we use this technique to increase the potential
filters on these dimensions.

The taxonomy data provided by the NCBI is used by many
different data marts in the Bioverse. As a dimension it needs to be
filtered in several ways. A simple list of taxon entries is stored in the
taxon table in Table 23.1. To provide for more complex queries
about relative positions, we calculate the topological closure of the
taxonomy tree. This closure is a collection of all paths in the tree. We
record the ancestor and child node, as well as the distance between
them, and other information about their place in the tree. An exam-
ple topological closure calculation is given in Fig. 23.3. Depending
on the query, a fact table can refer to either the original table or the
table holding the topological closure. Since the topological closure
table has an additional reference to the original table, certain filters
will go through two tables, a use of a snowflake schema.

When representing the topological closure, additional col-
umns are necessary whether or not this path is the shortest path,
the number of paths between these nodes, and the number of
shortest paths between the nodes. While this information is redun-
dant for the taxonomy example where every node only has a single
parent, in the event of more complex topologies, these columns
are useful for filtering as well. As an example the Gene Ontology
hierarchy allows for many parents, making it a directed acyclic
graph (DAG) rather than a tree.
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Table 23.1

The basic taxon table. No hierarchical information is present.

This is a simple dimension table describing taxonomy

entries. Columns such as division_id,
genetic_code_id, and mito_genetic_code_id
refer to other tables built on data provided by the taxonomy

database. The various ranks such as kingdom, phylum, and

family are stored for each entry to allow for queries about

subtree position. To enable some tree queries, relevant

information such as is_leaf is in the taxon table. This

table can be used to search for nodes at a known rank depth,

or which has a certain ancestor. Relative queries are not

available from this table

Taxon table

Column Description

Taxon_id Primary Key

parent_taxon_id Reference to the parent node.

rank NCBI rank, genus, species, etc.

division_id NCBI division

genetic_code_id Codon table

mito_genetic_code Codon table of mitochondria

embl_code EMBL 2 letter code.

is_leaf If this is a leaf node

is_root If this is the top of the tree

distance_to_root Number of elements to the root

distance_to_leaf . . .

kingdom

phylum

... . . .

genus

species

scientific_name Common name

other_names A hash of other names
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In addition to hierarchies, graphs and networks are common
structures in biological systems including protein–protein interac-
tion networks (19–22), biochemical pathways (23), and others.
However, the techniques outlined for trees and directed acyclic
graphs are no longer appropriate for graphs.

Answering any more than very basic graph queries is hard
in relational databases. One approach is to use a specialized
application, which is designed for graph and network repre-
sentation and queries. In the Bioverse database we have imple-
mented such an application at the interface between the
database and the application. It supports a simple breadth
first search, as well as searches for graph motifs. While this
makes certain tasks simple, specialized applications will not
alleviate all problems. Finding the shortest path between two
nodes is an expensive operation that may be better done out-
side of the database. The Bioverse does not have a pressing
need for these types of expensive queries, so they have not yet
been implemented.

4.3. Functional Data:

Affinity Grouping

Example

Combining or comparing data from different rows of the same
table is expensive in relational databases. This is one reason why
the choice of granularity is so important for the fact tables. As
previously discussed if the chosen resolution is too fine, queries
will require comparing rows. In some cases, there is no alter-
native because the queries are at many scales. One approach for
storing data at different resolutions is affinity grouping, which
enables the analysis of individual records as well as certain
groups of records.

In the Bioverse, we have both functional annotations from
trusted sources and predicted functional annotations.

Taxon table

Column Description

taxon_id

parent_taxon_id

rank

kingdom

...

genus

species

genetic_code

....

Primary key

Pointer to parent of this node

‘kingdom’, ‘genus’, ‘species’, etc...

Kingdom of this node

...

Genus of this node

Species of this node

Codon table of node

...

Molecule type table

Column Description

molecule_type_id

....

Primary key

...

Molecule sequence table

Column Description

molecule_id

taxon_id

molecule_type_id

alphabet_id

seq_length

...

Primary key

...

Alphabet table

Column Description

alphabet_id

description

....

Primary key

Summary of the entry

...

Fig. 23.3. An example of the topological closure data stored for a tree. All paths in the original tree are enumerated in the

topological closure.
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A simple table for the GO annotations stored in the
Bioverse is shown in Table 23.2. While this table provides
information on protein annotations, it is a limited view of the
data. Since each protein annotation is a unique fact, it is not
easy to see which annotations are related or which are the
most specific annotations in the DAG of GO features. To
provide access to this data we have calculated a second table
that gives information about which combinations of GO anno-
tations are seen together. An added benefit to calculating a
priori this data is having access to summary statistics when
making queries of the affinity-grouped tables. It is desirable to
have information on frequencies, which can be used to esti-
mate the statistical significance of an observation. This affinity-
grouping table is shown in Table 23.3.

4.3.1. Audit Dimensions Data that are unrelated to the science of the measurements, but
remains relevant, can be annotated in audit dimensions. These
tables record events that are significant, interesting, or possible
errors. An audit dimension can provide an overview of the fact
table or relevant meta data about the measurement. For computed
values an audit dimension may be used to record the version
information of software or runtime parameters used to generate
the fact.

For numeric columns audit dimensions may be used to
mark data that are missing, provide meanings or justifications
for missing data, or to identify interesting data. A flag that
marks all data which is more than two standard deviations
away from the mean allows the identification of problematic
or interesting data cases.

Table 23.2

A simple record of GO annotations

GO annotation table

Column Description

taxon_id Foreign Key to the Taxon table

molecule_id The identifier of the molecule

go_id Foreign Key to the Gene Ontology table

confidence Confidence assigned to the annotation

Computational Representation of Biological Systems 545



5. Bioverse
Extraction,
Transformation,
and Loading For the Bioverse we have developed in-house data-processing

tools, which move the data through a pipeline architecture, pro-
cessing and running algorithms at each stage.

5.1. ETL Discussion There are a few guiding principles that influence the design of our
tools:
1. Process data in large blocks. Since frequent disk access is

expensive, the data are read and processed in blocks that fit
into memory.

2. Filter early and often. We filter data as quickly as possible.
After opening a block of data, the first steps that are taken are
to eliminate any data that are not of interest, in order to
minimize later workloads.

Table 23.3

The pair_count column gives the total number of times

these two annotations are seen together, and the

go_1_count and go_2_count give how often

annotation occurs independently. This summary table is

very useful for exploring annotation pairs and other

relationships. The is_related column stores whether

one annotation of the two is an ancestor of the other in the

DAG, in which case the relationship represents the

frequency of different parts of the subtree of that node

GO and GO affinity grouping table

Column Description

taxon_id Foreign Key to the Taxon table

go_id_1 Foreign Key to the Gene Ontology table

go_id_2 Foreign Key to the Gene Ontology table

pair_count number of co-occurrences of go_id_1 and go_id_2 in
molecules

go_1_count occurrences of go_id_1 in organism

go_2_count occurrences of go_id_2 in organism

is_related Whether one of the go identifiers is a parent of the other

distance The distance between the entries in the GO tree
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3. Expect failures and corrupted, ambiguous, and inconsistent
data. All of the operations performed on the data are
recorded. Any corrupted, ambiguous, and inconsistent data
that are encountered will need to be dealt with robustly.

4. Log and audit every block, and store all bad data in a way that
allows for restarting for failed blocks.
The ETL tool when constructed allows for short programs to

be written, which will perform on disk translation of the down-
loaded and generated data. This data should leave in a state that is
amenable to being uploaded to the database.

5.2. Bioverse

Extraction

Bioverse data is extracted from a wide variety of data formats.
For each data format a parser is available, which will produce all
data in the file without any attempt at filtering or validation.
Parsers catch formatting errors quite often, and log the failure
of the data read to the database. Additionally any data that was
expected or is optional that was not present is marked as a
failure or a missing value.

5.3. Bioverse

Transformation

The data generated from the extraction stage are transformed to
prepare it for the Bioverse staging area. Blast hits against databases
are checked to make sure that the matching molecule is actually in
the database we have loaded. Many types of data will have unique
values generated so they can be identified unambiguously later.
Errors encountered at this stage are recorded in the database, and
the data at fault is not processed further. If the offending program
is restarted, it will not duplicate data, since everything takes place
in a single database transaction and the failure aborts the
transaction.

5.4. Bioverse Loading The loader code works with large chunks of data, each of which
is associated with a block of records. These data are copied into
the database. In the event of failure, all of the records in the
block are marked as failed in the database, and none are loaded.
Again, this consistency ensures that the operation can be
repeated when the problems with the data have been resolved,
or the underlying data have been regenerated, and there will be
no duplication of data.

6. Conclusion

We have addressed the complex problem of creating a database
and representation to store a wide variety of biological information.
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We expect that, in conjunction with the Pipeline, API, and web
application, the database model we have created will be useful to
help generate hypotheses and solve problems for biological
research.

In addition to introducing the basic data warehousing con-
cepts, we have provided a general strategy for themanagement and
integration of biological data. Specific examples demonstrate how
the Bioverse is constructed and how large volumes of data are
loaded, stored, and analyzed within the data warehouse.
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