
Chapter 10

Inferring Molecular Interactions Pathways from eQTL Data

Imran Rashid, Jason McDermott, and Ram Samudrala

Abstract

Analysis of expression quantitative trait loci (eQTL) helps elucidate the connection between genotype,
gene expression levels, and phenotype. However, standard statistical genetics can only attribute the
changes in expression levels to loci on the genome, not specific genes. Each locus can contain many
genes, making it very difficult to discover which gene is controlling the expression levels of other genes.
Furthermore, it is even more difficult to find a pathway of molecular interactions responsible for control-
ling the expression levels. Here we describe a series of techniques for finding explanatory pathways by
exploring the graphs of molecular interactions. We show several simple methods can find complete
pathways that explain the mechanism of differential expression in eQTL data.
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1. Introduction

Recent studies on expression quantitative trait loci (eQTL) have
revealed that differential gene expression is sometimes tightly
linked to variation in specific chromosomal locations (1, 2).
When gene expression is also associated with phenotypes such as
disease, there is great interest in discovering the pathway connect-
ing genetic variation and differential expression. However, this
remains a difficult task. The chromosomal locations generally
include many candidate causative genes. Genetic markers are able
to narrow the genetic variation down to a region of roughly ten
genes.When the expression level of a gene is strongly linked to one
locus, genetic variation in one of these genes is presumably causa-
tive for the differential expression. However, linkage only cannot
tell us which gene out of all the genes in the locus is causative.
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Furthermore, even when the causative gene is known, it is very
difficult to predict all the molecules involved in the regulatory
pathway. In some situations, the differentially expressed gene
falls within the locus it is linked to – in this case (cis-regulation),
we assume that changes in the gene’s promoter, enhancer, or other
cis-regulatory sites effect mRNA expression levels. In many cases,
however, the differentially expressed gene is physically very distant
from the linked locus. We assume the locus contains genes that
regulate the differentially expressed gene, potentially through a
long and intricate pathway (see Fig. 10.1). However, uncovering
the precise pathway that regulates transcription remains difficult.
This is because genes, proteins, and other biological molecules
form highly context-dependent interaction networks, allowing for
many possible paths from a causative gene in the linked locus to the
differentially expressed gene.Here, we consider several approaches
to solving this problem by searching graphs of known molecular
interactions. Given the broad scope of this problem, we focus on
differentially expressed genes that are strongly linked to exactly
one locus. The methods section describes the techniques for
determining linked loci, various methods to find pathways in
interaction graphs, and several approaches to evaluating these
methods. Finally, we discuss an evaluation of these methods and
the pathways they discover, along with possible future extensions
to these methods.

Chromosome 2

16 Genes in Linked Locus

Differentially 

Expressed Gene

?Regulatory 

Pathway

Fig. 10.1. Finding regulatory pathways. eQTL studies lead us to believe that genetic variation within the linked locus is

responsible for the differential expression of another gene. However, we do not know which gene in the locus is

responsible for regulating the expression. Furthermore, even if we did know which gene in the locus was responsible, we

would still not know the regulatory pathway responsible. Here, we survey several methods for finding potential regulatory

pathways from databases of known molecular interactions. This example is from eQTL studies in yeast (1), where the

differentially expressed gene YJR123W has been linked to a locus with 16 genes in it.
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2. Methods

Given a set of differentially expressed genes and their linked loci,
we wish to find pathways from each locus to each differentially
expressed gene, such that the differential expression can be
explained by the pathway. This involves both discovering which
gene in the locus is causing the differential expression as well as
finding a coherent pathway from that gene to the differentially
expressed gene, i.e., the mechanistic basis of the wiring diagram
that explains the gene expression.

2.1. Finding Linked

Loci

The first step in analyzing eQTL data is determining linkage. There
has already been a great deal of work to find linked loci through
quantitative methods. Those methods are not the focus of this
chapter; here we highlight a few techniques to direct further explora-
tion of the reader. All of these methods involve assessing the effect
each locus has on the expression level of every gene. The most direct
approaches use a Wilcoxon ranksum test to assign statistical signifi-
cance to each locus (1, 3). More sophisticated techniques include
calculating linkage by simultaneously considering multiple markers
and intervals, as well as additional corrections for multiple testing
(1, 4–6). Thoughwe only focus on analysis once linkage information
is in hand, we want to emphasize the strong dependence of all
methods on the assessment of linkage; clearly, it is very important
to determine linkage very carefully and rigorously (seeNote 1).

2.2. Building a

Molecular Interaction

Graph

We wish to find pathways where each interaction is a known
interaction between two molecules. This requires assembling a
catalog of all interactions, to facilitate searching. Thus far, we
have focused on protein–protein, transcription regulation, and
phosphorylation interactions. There are several publicly available
databases of this information, including many high-throughput
experiments (7–10). We have also included predicted protein–
protein interactions from Bioverse (http://bioverse.compbio.
washington.edu) (11), determined through the interologmethod.
Note that this does not represent all known interactions; further
work must explore the inclusion of metabolites as well as the effect
of non-coding RNA (see Note 2). Related chapters discuss the
techniques for reconstructing interaction graphs.

Themost natural way to store these interactions is in the formof
a graph, with nodes for each molecule and edges for each interac-
tion. Due to the sparseness of these graphs, an adjacency list is the
most efficient way to store the edges of the graph. The directionality
of each edge should correspond to the type of interaction, e.g.,
physical interactions are bidirectional while transcription regulation
interactions are directed from transcription factors to their targets.
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2.3. Finding Pathways

Between Differentially

Expressed Genes and

Linked Loci

With a set of differentially expressed genes and their linked loci, as
well as an interaction graph, we can formulate our problem of
finding plausible causative pathways. All of these methods attempt
to find the causative gene and pathway in the same step. We will
search all paths from the differentially expressed gene to all genes in
the linked locus; themost plausible causative path should lead to the
correct causative gene. In the next few sections, we will examine
several methods for determining which pathways are the most
plausible.

2.3.1. Finding Linear Paths

Through Directed Graph

Searching

The simplest formulation of a pathway is a linear sequence of
interactions, from the causative gene to the differentially expressed
gene. Our only obstacle is the choice of method for evaluating
pathways and choosing the best one. Searching a graph for linear
paths is already a well-studied problem. We explain a variety of
different evaluating pathways, beginning with very simple
approaches and building up to more complex procedures. The
most straightforward method of evaluating a pathway is by its
length. Clearly, a shorter pathway is more believable than a very
long one. We can find the shortest path from genes in the linked
locus to the differentially expressed gene through a standard
breadth-first search (BFS). For efficiency, instead of searching for
pathways from each gene in the linked locus to the differentially
expressed gene, we can reverse the direction of all edges in the
graph and search for paths from the differentially expressed gene to
each gene in the linked locus. BFS is guaranteed to find the short-
est path to every node, and is very fast and efficient.

Unfortunately, path length alone is an insufficient criterion for
determining the most likely causative pathway. Often there will be
many pathways of the same length. Furthermore, in many cases
BFS will find pathways involving genes with uncorrelated expres-
sion levels, while a slightly longer pathway exists, which involves
highly correlated genes. Using this idea, we can favor pathways
with highly correlated genes, by assigning a cost to each edge and
searching for the lowest cost path. Let corr(i, j) be the correlation
coefficient of the expression levels for genes i and j. For each edge
(i, j) in the interaction graph, we compute a cost C(i, j):

Cði; jÞ ¼ ÿlogjcorrði; jÞj

The absolute value of the correlation coefficient is taken because
both positive and negative correlations are believable in biological
pathways, corresponding to activators and repressors. The nega-
tive log is taken because our graph search finds the lowest cost
paths, while we wish to favor the interactions between highly
correlated genes (see Note 3). Finding lowest cost paths can be
implemented very efficiently using a uniform cost search. While
BFS uses a first-in first-out queue to order the exploration of nodes
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in the graph, with a uniform cost search we explore nodes with the
shortest pathway. (This is done efficiently through use of the
priority queue data structure.)

Though this finds pathways with highly correlated genes, many
of the pathways are still not biologically plausible. In particular, as
these pathways are intended to explain gene expression level, we
expect the differentially expressed gene to be immediately con-
trolled by some transcription factor. We can make simple modifica-
tions to our graph searching methods to take advantage of the extra
biological information we have on each interaction. For example, it
is easy to modify a uniform cost search to ensure the first step is
always to a transcription factor. Furthermore, the interaction graph
could be extended to include other types of interaction data. For
example, if microRNA and their targets were included in the inter-
action graph, wemight expect microRNA to be involved in regulat-
ing expression in a manner similar to transcription factors.

2.3.2. Random Walks

Across an Interaction Graph

One major shortcoming of all of the previous approaches has been
that they find only linear pathways. True biological pathways
involve many non-linear components, such as parallel pathways,
which give biological systems added robustness, or feedback loops,
which allow large responses to small stimuli. In a recent paper, Tu
et al. proposed using a random walk across an interaction graph to
find causative pathways (3). Their method involves finding path-
ways in the reverse direction, so it begins by reversing the direction
of all edges in the interaction graph. Then they perform the
following steps:
1. In the reversed interaction graph, start at the differentially
expressed gene.

2. Randomly choose a neighbor of the current node, and go to
that node.

3. If the new node is a gene in the locus, then stop the search and
record the end gene.

If not, return to step 2.

4. Repeat the random walk 10,000 times. Choose the causative
gene as the gene in the linked locus that was visited most
frequently.
When choosing a neighbor to visit, nodes with highly corre-

lated expression levels are favored. The probability of choosing a
neighbor for the next step is proportional to the correlation coeffi-
cient of the expression levels. Furthermore, to prevent arbitrarily
long paths, the walk is terminated after ten steps if it still has not
reached a gene in the linked locus.

The choice of a causative pathway is not as clear in this sce-
nario. Many of the nodes that were visited were along spurious
paths. However, we do not only want to find the most visited
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nodes along a linear path between the differentially expressed gene
and the causative gene; this approach was chosen for its ability to
find non-linear pathways. Thus, we count how many times all
nodes were visited during the random walks. If the causative
gene has been visited c times, we include all genes that have been
visited some fraction c/k times (for example, c/3 times), and which
are on a path from the differentially expressed gene to the causative
gene.

Here we explain one small optimization of this approach.
Instead of actually performing a random walk, we can replace it
with a closed form equivalent; we will compute the probability
the random walk will end at each gene in the linked locus. This
improves efficiency, and more importantly it is able to exactly
model the random walk without the need for many repeated
trials.

If we number the nodes from 1 to n, let us denote the
probability of being at node i after t steps as Pt[i]. Let us denote
the start node. We will denote the probability of transitioning to
node j from node i to be T [i, j]. Then we can precisely compute
Pt[i]:

P0½s � ¼ 1 and P0½i� ¼ 0 for i 6¼ s :

Pt ½ j� ¼ !n i ¼ 1Pt ÿ 1½i�T ½i; j �:

To get to node j at time t, the random walk must be in some
neighbor node i at time t ÿ 1, and then it must move from node i
to node j.

Using these equations, the probability distribution can be
efficiently calculated to any arbitrary time t by storing only two
arrays of size n, one for the probabilities at time t and one for time
t ÿ 1.

While this approach is straightforward and has been used to
discover pathways from eQTL data, several variants of this method
still need to be explored. Several other distance metrics using
random walks across a graph have been proposed – further testing
is required to determine which method is optimal (see (12) for a
review of other distance metrics). Furthermore, the interaction
graphs in higher organisms are significantly larger; for large
enough graphs, these methods will be impractical due to memory
constraints.

2.4. Evaluation Using

Gene Knockouts

It is currently difficult to assess the accuracy of inferred pathways
from eQTLdata because there is no good data set for validation. In
virtually all cases, the true pathway is unknown. Furthermore, we
cannot expect to find all previously known biological pathways –
the nature of the eQTL data relies on natural genetic variation, and
this variation may not perturb known pathways. Thus, there is no
good ‘‘gold standard’’ data set (see Note 4).
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Tu et al. proposed a solution to this problem by using gene
knockouts to create a fake ‘‘gold standard’’ eQTL data set (3). The
Rosetta compendium of gene knockouts in yeast (13) provides
expression levels in over 200 gene knockout experiments. This
gives the same information as in eQTL data: expression levels
combined with genetic variation. In the knockout experiments, we
know preciselywhich gene has been removed, while geneticmarkers
from eQTL studies narrow the region down to a locus with�5–50
genes. To simulate eQTL data, we create a locus of ten genes
around the true knockout. Each of the proposed methods can
then be tested with the expression data and these created loci. If
the causative gene in the inferred pathway is the gene knockout,
then we conclude the method was successful. We are assuming that
if the predicted pathway includes the correct causative gene, then
the entire pathway is correct; this assumptionwill not always be true.

It is very difficult to determine which genes are truly differen-
tially expressed due to the gene knockouts. Expression data is
extremely noisy; to decide which genes are differentially expressed,
we must set a threshold. Also, as proposed by Tu et al., we can
cluster genes by common transcription factors, and only take large
clusters. Both of these methods require subjective thresholds.

These methods greatly simplify our test cases. We have found
the accuracy of these methods is highly dependent on the subjec-
tive decisions for gene expression. Nonetheless, though these test
cases are far from perfect, this is a good first evaluation before
turning to much more expensive and time-consuming verification
with laboratory experiments.

3. Discussion

We have outlined several techniques for finding pathways from
eQTL data. In our experiments on gene knockouts, we have found
that all of the methods above perform significantly better than
random choice. For example, these methods suggested an inter-
esting feedback cycle in theMAPKKKpathway. The pathway starts
from the pheromone response element Ste2 and after many inter-
actions it regulates Dig1; we find that Dig1 in turn regulates the
transcription of Ste2 (see Fig. 10.2). This feedback cycle has been
reported before through direct experimentation; we simply high-
light this as one noteworthy pathway uncovered by these methods
(14–17).

We also consider one example from using true eQTL from
yeast (1). Consider the differentially expressed gene YJR123W and
the set of 16 genes that are in the linked locus, as in Fig. 10.1. All
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of the methods discussed above consistently highly rank a pathway
fromYBR059C to YJR123W (seeFig. 10.3).We note that the roles
we predict are consistent with the annotations in CYGD (8) and
previous literature: YBR059C is a well-known kinase, and has been
implicated as an important protein in signaling pathways (18);
YKR092C is known to be phosphorylated, and it is believed that it
may bind DNA or act as a cofactor (19); YDR174W is known to
bindDNAor act as a cofactor for transcriptional regulation (20, 21).
As the true pathway is unknown in this case, we cannot be certain of
these results without direct experimental validation. However, the
agreement between this proposed pathway and the available litera-
ture data is very promising. In total, we predict 411 explanatory
pathways for eQTL in yeast, and expectmany of these will be correct
given the accuracy in gene knockout experiments.

In general, we have found the accuracy of all the methods are
extremely similar (see Fig. 10.4). There is also a high degree of
overlap between the pathways found by each method (see
Fig. 10.5). However, these results are highly dependent on the
set of test conditions used (the p-value cutoffs for defining differ-
entially expressed genes from the knockout data, as well as the
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Fig. 10.2. An example pathway found in gene knockout tests. The MAPKKK pathway

is known to start when the pheremone receptor Ste2 interacts with �-factor. After many

steps, the pathway regulates Dig1 and Ste12. From knockout experiments, we found that

Dig1 regulates Ste2, demonstrating a feedback cycle in the MapKKK pathway. This

feedback cycle was already known, but it serves to demonstrate the types of pathways

that can be uncovered through these methods.
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p-value cutoffs used in defining the interaction graph). We have
found that under some conditions simply taking the shortest
unweighted path outperforms other methods, while in other con-
ditions the random walk method is the best. We are still attempt-
ing to uncover patterns that explain the differences in each
method. However, we can clearly see that each method is capable
of producing explanatory pathways, as seen in the examples above.

+p+p

Fig. 10.3. A pathway explaining the differential expression of YJR123W in yeast eQTL

experiments (see Fig. 10.1). Here the dashed line represents the phosphorylation of

YKR092C by the kinase YBR059C, the grouped proteins are a physical complex forma-

tion, and the final solid line is a transcriptional regulation interaction by transcription

factor YPR104C to its target YJR123W.
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Fig. 10.4. A comparison of the accuracy of the three methods to map pathways

from eQTL. All the methods have nearly identical accuracy on the gene knockout tests.
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Our work highlights the strong dependence all of these
methods have on the interaction graph. If even one interaction
from the true pathway is missing from the interaction graph,
none of these methods will be able to deduce the correct path-
way. Furthermore, if the interaction graph contains many spur-
ious edges, then all of these methods can easily be misled to
deduce the wrong pathway, by finding a ‘‘short-circuited’’ path-
way. We hope that this work will motivate continuing work to
improve the accuracy and coverage of current molecular interac-
tion databases (see Note 2).

Though these approaches have been somewhat successful,
they are far from complete. They do not achieve perfect accuracy,
and they cannot find explanatory pathways in many cases. Indeed,
we have also eliminated a large portion of the data by considering
only highly differentially expressed genes and genes that are clus-
tered by transcription factor. Still, we are able to find a large
number of novel pathways with these methods.

The approach described here also serves as an extensible fra-
mework to try additional methodology. Each of the variants
described here requires only very small changes to the underlying
code. With minimal effort, additional approaches can be added
and compared to the existing methodology. For example, one
could easily test what effect changing the interaction graph has
on the predictions. This framework greatly facilitates the develop-
ment of techniques for generating new candidate pathways.

We wish to emphasize that these approaches only serve for
hypothesis generation. Verification of the proposed pathways
requires additional work in the laboratory. Though the accuracies
of these methods are not ideal, they do narrow a nearly infinite
space of possibilities down to a tractable number. We cannot and
do not expect these methods to be perfect, given the errors in our
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Fig. 10.5. Overlap of pathways found by each of the three methods evaluated on the

known gene knockout test cases. Aside from minor differences, the methods are

correct for the same test cases.
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interaction graph, the missing molecular interactions (e.g., meta-
bolites), the noise in the gene expression levels, and the numerous
other factors that are not modeled at all (e.g., chromatin
remodeling).

One major drawback of all these approaches is that they are
designed to find pathways when a gene shows strong linkage to
only a single locus. This accounts for a small fraction (less than
20%) of real eQTL data – as shown by the studies of Brem and
Kruglyak (1). Several studies have proposedmethods for analyzing
eQTL data by simultaneously considering all genes and all loci
(22, 2). These approaches attempt to construct a complete net-
work of all genes and their relationships using machine-learning
techniques. However, these approaches only indicate the influence
of some genes on the expression level of other genes; they do not
deduce pathways of molecular interactions, which provide a
mechanistic basis for the wiring diagram for gene expression.

The techniques evaluated in this manuscript and the techni-
ques for network inference complement each other and should be
integrated together to provide the most coherent explanation
possible. As a first step, once the network reconstruction algo-
rithms have uncovered the most important relationships, the tech-
niques described here could be used to find the pathway of
molecular interactions that are responsible. For example, if the
network reconstruction algorithms suggest that gene A influences
gene B (through some potentially long and indirect method), we
could search for a pathway in the interaction graph connecting
gene A to gene B. Furthermore, we feel that the interaction graph
should be directly incorporated into the network reconstruction
algorithms, through the use of structure priors, i.e., the network
reconstruction algorithms should favor inferring relationships
along pathways with very good explanations. We are currently
exploring these approaches to enable the inference of a greater
number of more accurate pathways.

4. Notes

1. Importance of determining linkage. As noted previously, all
subsequent analysis is based on first using statistical tests to
determine to which loci each gene is linked. There are several
techniques that differ in their sophistication.

2. Importance of the interaction graph. All of the methods men-
tioned here are highly sensitive to the edges, which are in the
interaction graph. If even one edge in the true pathway is
missing from the graph of molecular interactions, then it will
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be impossible to discover the true pathway. If the graph
contains false edges, all of the graph searching methods can
very easily be misled. Many of the interactions in our network
come from high-throughput experiments, such as yeast two-
hybrid or ChIP-chip experiments. Converting this data to a
graph requires the use of subjective p-value cutoffs. This
means the interaction graph will always contain some spur-
ious interactions, and it will be missing many true interac-
tions. We are still exploring the robustness of these methods
to errors in the interaction graph.

3. Converting correlations to distances.When converting expres-
sion correlations to distances, large correlations must be con-
verted into small distances and small correlations into large
distances.We chose the distance to be 1ÿ|corr(i, j)|; however,
this is simply a convenient heuristic. Several other transforma-
tions could be applied; we have experimented with
ÿlog(|corr(i, j)|) and 1/(|corr(i, j)|), and found they all
obtain similar results.

4. No gold standard data set for testing.As there is no eQTL data
set for which all of the true pathways are known, it is very
difficult to determine if any new methods are successful or
not, without direct experimentation. The best test set that can
be used currently is the gene knockout data. However, we
must still decide to use some subjective criteria to decide
which genes are differentially expressed. Furthermore, we
do not know the true pathway between the knockout and
the differentially expressed genes.
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