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Abstract
Background: Proteins that are similar in sequence or structure may perform different functions
in nature. In such cases, function cannot be inferred from sequence or structural similarity.

Results: We analyzed experimental structures belonging to the Structural Classification of
Proteins (SCOP) database and showed that about half of them belong to multi-functional fold
families for which protein similarity alone is not adequate to assign function. We also analyzed
predicted structures from the LiveBench and the PDB-CAFASP experiments and showed that
accurate homology-based functional assignments cannot be achieved approximately one third of
the time, when the protein is a member of a multi-functional fold family. We then conducted
extended performance evaluation and comparisons on both experimental and predicted structures
using our Functional Signatures from Structural Alignments (FSSA) algorithm that we previously
developed to handle the problem of classifying proteins belonging to multi-functional fold families.

Conclusion: The results indicate that the FSSA algorithm has better accuracy when compared to
homology-based approaches for functional classification of both experimental and predicted
protein structures, in part due to its use of local, as opposed to global, information for classifying
function. The FSSA algorithm has also been implemented as a webserver and is available at http://
protinfo.compbio.washington.edu/fssa.

Background
It is commonly believed that sequence determines struc-
ture, which in turn determines function. This paradigm
forms the basis of functional annotation methods using
sequence or structure similarity. However, since the struc-
ture space is much smaller than either the sequence space
or the function space, there will be exceptions to this par-
adigm: Similar functions may be exerted by distinct
sequences and structures, as in the kinase family [1]. Alter-
nately, similar structures may exert very different func-
tions, as in the TIM barrel fold family [2,3]. The presence
of multi-functional fold families suggests that structure

and function do not always correlate. (Here we refer to
"fold family" as a collection of proteins adopting the same
structural fold.) However, the presumption among biolo-
gists is that the function of protein can be easily inferred
whenever its structure is obtained either by experimental
means or by computer simulation. This forms part of the
rationale for structural genomics projects where the goal is
to obtain structures for representative members of a fold
family in the hope that the structure and function of the
other members of the family will be apparent. While this
is true in the majority of the cases, a significant minority
(over one third) of structures from structural genomics
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projects represent proteins of unknown function, anno-
tated merely as "hypothetical proteins" [4]. Classification
and identification of the exact function for protein targets
given an experimentally determined structure still
remains an open challenge [4-6].

For many proteins without experimental structures and
easily identifiable sequence homologues, structural mod-
els can be generated by fold recognition algorithms and
used for functional inference. The fold recognition algo-
rithms typically align a query sequence to proteins whose
structures have been experimentally determined, and are
extremely effective at determining the correct fold, even
when the sequence similarity between the query and its
homologue is very low [7,8]. Studies have been conducted
to evaluate the possibility of using predicted structures to
infer protein function: For example, predicted structures
were used to identify possible functional sites through
database matching [9,10]. In addition, structure predic-
tions were used to infer function in a genomic scale for
proteins without obvious sequence homologues [11-13].
Despite all these studies, the correlation between success-
ful fold recognition and correct functional annotation has
not been thoroughly studied and quantitated.

Our first goal was to determine the accuracy of functional
inference when the correct structural fold for a given target
protein sequence was predicted using fold recognition
algorithms. To accomplish this, we evaluated a set of fold
predictions made in the LiveBench [14-17] and PDB-
CAFASP [18] experiments. We found that similarity in
structural folds derived from fold recognition algorithms
does not lead to correct functional assignments approxi-
mately one third of the time when the protein is a mem-
ber of a multi-functional fold family. Considering that the
structures of most proteins will never be solved experi-
mentally, methods that perform accurate functional
annotation based on predicted structure even for this
minority of proteins will significantly enhance our ability
to utilize the vast amount of available sequence data.
Therefore, novel methods to predict function that go
beyond sequence and structure comparisons are necessary
to reduce the gap between structural genomics and func-
tional genomics.

We previously developed a computational method called
Functional Signatures from Structural Alignments (FSSA)
[19] to address this problem. In brief, given an ensemble
of proteins sharing the same structural fold, we first per-
form all-against-all structure alignments. We use the
alignments to separate the contribution to structure and
function for each amino acid residue in each structure
using log odds scores. For a given protein, the collection
of these log odds scores for all residues comprises its func-
tional signature, which can be used to classify query pro-

tein structures into functional categories. Our method
shows comparable or better results than other sequence or
structure comparison based methods, especially when the
sequence identity between a target protein and others
belonging to the same fold family is relatively low.

Here, we extend our previous work as follows: We evalu-
ated our algorithm for 42 multi-functional fold families
using experimental structures collected from the latest
release of the SCOP database (an increase of 28 from the
fourteen evaluated previously [19]). We then evaluated
the performance of our algorithm using predicted struc-
tures generated by the LiveBench and the PDB-CAFASP
experiments. In both cases, we showed that our algorithm
performs better than sequence and structure comparison
approaches for functional annotation. We further investi-
gated the reason for the FSSA algorithm having good per-
formance even on predicted structures that are generated
with biases towards the incorrect functional categories
(i.e., those that are using a template from a different SCOP
superfamily). Finally, we implemented the FSSA algo-
rithm as a webserver [20]. The webserver takes a PDB file
and a SCOP fold as input, and outputs predicted SCOP
superfamilies and corresponding confidence scores, as
well as the functional signature, which indicates the con-
tribution of each position and residue type to the function
of the protein.

Results
Accuracy of functional assignment based on experimental 
structure similarity
The Structural Classification of Proteins (SCOP) database
curators classify protein domains whose structures or
functional features suggest a common evolutionary rela-
tionship into the same superfamily [21-23]. We use the
SCOP superfamily as a proxy for functional category, since
it is generally regarded as a gold standard for defining
remote homology and widely used in the literature
[13,24,25]. Even though the correlation between SCOP
superfamilies and function is not absolute, and that pro-
teins within the same superfamily may have different bio-
chemical activities, this may be used as a reasonable
approximation for evaluating functional assignment of
classification methods.

We first analyzed the fraction of structural domains that
belong to multi-functional fold families, which gives an
estimate of how frequently we will encounter the problem
of ambiguous functional assignment for a newly solved
structure. In the SCOP release version 1.69, 11% of all
SCOP folds contain multiple superfamilies, while 46% of
all domains belong to one of these multi-functional fold
families (Table 1). Therefore, although multi-functional
fold families account for a small fraction of the fold space,
these folds are usually more abundant than other folds.
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Our analysis suggests that the problem of ambiguous
functional assignment may be encountered for about half
of the structures solved experimentally.

Accuracy of functional assignment based on predicted 
structure similarity
We next investigated whether functional assignment for a
given protein can be inherited from its closest structural
homologues predicted by state-of-the-art fold recognition
techniques. We collected a set of fold predictions made in
the LiveBench [17] and the PDB-CAFASP [18] experi-
ments. These experiments evaluate how well structure pre-
diction servers perform on blind prediction targets. One
of the best performing fold recognition methods in these
experiments is 3D-Jury [26,27], which collects output
from various individual structure prediction servers and
generates a consensus prediction. We obtained 86 pro-
teins from the LiveBench 7, LiveBench 8, LiveBench 9 and
PDB-CAFASP 1 experiments, representing "hard" predic-
tion targets correctly assigned to a multi-functional fold
family.

We then evaluated the correctness of functional assign-
ment for these 86 proteins using their closest structures as
determined by 3D-Jury using the SCOP nomenclature
(Table 2). The fraction of correct assignments is similar for
all four experiments, indicating that our estimates have
low variance and high confidence. There is no obvious
increase in the fractions of correct assignments for the
three consecutive LiveBench experiments, indicating that
increasing quality in structure prediction may not neces-
sarily lead to improvements in structure-based annotation
transfer. Overall, we found that approximately one-third

(26/86 for all four data sets) of the proteins in the multi-
functional fold families are not assigned to the correct
superfamilies, even when the correct structural folds are
identified (Table 2).

Performance of FSSA on experimental structures
Our published study on FSSA [19] was carried out on a
fraction of fold families in the SCOP database (14 fold
families where each protein has less than 95% sequence
identity to each other). Here we extended our previous
performance evaluation to all the 42 SCOP fold families
for which sufficient training data are available, and com-
pared the performance of the FSSA algorithm with several
other sequence and structure homology based function
classification methods (Smith-Waterman, PSI-BLAST,
HMM, MAMMOTH and CE). The comparison is not
totally equitable since these other methods were not par-
ticularly developed or parameterized for functional classi-
fication; however, they are widely used by biologists to
infer function based on similarity.

To investigate the correlation between performance and
similarity among testing and training sequences, we used
four different data sets retrieved from the ASTRAL com-
pendium, representing proteins whose pairwise sequence
identities are less than 10%, 20%, 30% and 95% to each
other. For all sequence identity levels, these structural
folds in our data sets contain all-α, all-β, α/β, α+β as well
as small proteins, and provide a good representation of
the protein fold space. We performed cross-validation
experiments to examine the functional classification per-
formance for different methods. Overall, the FSSA algo-
rithm has the best performance when pairwise sequence

Table 1: Fraction of multi-functional fold families in the SCOP database. About half of the protein domains belong to a multi-functional 
fold family, suggesting that the problem of ambiguous functional assignment is very common for experimental structures.

Category Number of folds Number of superfamilies Number of families Number of domains

Folds with multiple superfamilies 127 755 1,414 32,913
Folds with a single superfamily 1,006 1,006 1,700 37,946

Table 2: The fold recognition and functional assignment performance of the 3D-Jury system in the LiveBench 7 (LB7), LiveBench 8 
(LB8), LiveBench 9 (LB9) and PDB-CAFASP1 (PC1) experiments. Overall, 43.2% (163/377) of all hard targets in these experiments 
belong to a multi-functional fold family, similar to the frequency (46.4%) in the SCOP database. Approximately one-third (26/86) of the 
proteins belonging to a multi-functional fold family are assigned to the incorrect functional category even when the folds are predicted 
correctly.

Data Set LB7 LB8 LB9 PC1 Total

Number of targets 115 172 188 130 605
Number of hard targets 73 99 111 94 377
Number of hard targets with correctly identified fold 29 40 36 30 135
Number of hard targets within a multi-functional fold family 33 46 42 42 163
Number of hard targets within a multi-functional fold family with correctly identified fold 15 27 24 20 86
Number of hard targets within a multi-functional fold family with correctly identified function 10 19 16 15 60
Page 3 of 10
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:278 http://www.biomedcentral.com/1471-2105/7/278
identity in the data sets is less than 30%, though the dif-
ferences are subtle between all methods utilizing struc-
tural information (Figure 1). Sequence homology based
function classification methods perform relatively poorly
at low sequence identity levels. Our evaluation demon-
strates that the FSSA algorithm would be useful for auto-
mated function annotation applications for structural
genomics projects, when used in conjunction with other
sequence and structure comparison methods.

Performance of FSSA on predicted structures
We next investigated whether the FSSA algorithm can be
applied to structures that are predicted by homology
modeling techniques. We selected 66 hard prediction tar-
gets from the LiveBench and PDB-CAFASP experiments
for our analysis. These targets are those that have been
assigned to the correct multi-functional fold families by
the 3D-Jury system and belong to the 42 fold families for

which sufficient training data are available. We used our
own homology modeling and optimization algorithms
on these prediction targets and generated all-atom struc-
tural models (see Methods). We then applied the FSSA
algorithm on predicted structures to test whether they can
be assigned to the correct functional categories. For com-
parison, we also tested the experimental structures corre-
sponding to these prediction targets by the FSSA
algorithm. We found that both FSSA and structure com-
parison method perform well, though function predic-
tions on the modeled structures are generally slightly
worse than those obtained using the experimental struc-
tures (Figure 2 and Additional file 1).

Performance of FSSA on predicted structures using 
templates from incorrect SCOP superfamilies
We then focused on 23 structures whose templates (best
hits as ranked by the 3D-Jury system) belong to a different

Relative performance of six function classification methods on data sets from the SCOP database that has been filtered by 10%, 20%, 30% and 95% pairwise sequence identity, respectivelyFigure 1
Relative performance of six function classification methods on data sets from the SCOP database that has been filtered by 10%, 
20%, 30% and 95% pairwise sequence identity, respectively. We used all folds available (42 fold families in 95% sequence iden-
tity level), as opposed to our previous study, where only selected folds in the SCOP database was used (14 fold families in 95% 
sequence identity level). For each function classification method, the number of SCOP folds is plotted against the minimum 
prediction accuracy achieved by that method. The FSSA algorithm has the overall best performance in function classification 
when sequence identity is less than 30%.
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superfamily than the query, since these structures are
potentially biased towards the incorrect superfamily and
pose a challenge for function prediction methods. Struc-
ture superposition confirmed that the predicted structures
tend to be similar to the templates used to construct the
models, with an average Cα RSMD of 3.42Å. For 16/23
predicted structures, the FSSA algorithm correctly identi-
fies their functional categories, even though the structures
were modeled in a manner that biased them towards folds
in different function categories. In comparison, the struc-
ture comparison method only identifies the correct func-
tional categories for 7/23 predicted structures. This
suggests that the FSSA algorithm is less sensitive to biases
in predicted structures caused by using templates from dif-
ferent superfamilies.

To further investigate the mechanism that enables FSSA to
accurately classify modeled structures even when the tem-
plates are derived from incorrect SCOP superfamilies, we
visually examined two prediction targets: an aldolase
from Pseudomonas (PDB identifier 1nvm-A) and a phos-
phosulfolactate synthase from Methanococcus (PDB identi-
fier 1qwg-A) (Figure 3). Both targets have 3D-Jury scores
higher than 100, indicating high confidence in the accu-
racy of fold recognition and the alignments generated by
the 3D-Jury system. However, the predicted structures for
both targets are correctly classified by the FSSA algorithm
but not by structure or sequence comparison methods.
Both prediction targets belong to the TIM barrel fold, and
the predicted structures correctly reproduce the global bar-
rel shape. We found that both predicted structures are gen-
erally biased toward the conformation of the template
structures, especially in the C-terminal region (shown in
red in Figure 3). However, some local structural features in
experimental structures are correctly captured by our
structure prediction algorithm: For example, the second
helix in the predicted structure for the Pseudomonas aldo-
lase resembles that of the experimental structure, rather
than the template structure. Similarly, for the Methanococ-
cus phosphosulfolactate synthase, a small extra helix-like
region is correctly generated after the second helix in the
barrel, similar to that in the experimental structure. Since
the FSSA algorithm uses both local sequence and structure
to determine function, it is less susceptible to biases in
global structure when classifying protein function.

The good performance of the FSSA algorithm here is
mainly due to its immunity to global structural bias,
rather than its ability to match functional signatures to the
correct superfamily. Our analysis nevertheless suggests
that the combination of local structure and local sequence
information, rather than global structural fold, is impor-
tant in assigning function to predicted structures.

The FSSA algorithm as a webserver
Using data sets from the ASTRAL compendium [28] for
the SCOP database, we implemented the FSSA algorithm
as a webserver for automated function prediction [20].
Because the FSSA algorithm needs sufficient data for train-
ing, currently our server only contains 42 of the 127
multi-functional fold families. Domains in these 42 folds
account for 69% of all domains within multi-functional
fold families in the SCOP database.

The webserver takes a PDB file and a SCOP fold as input,
and outputs predicted SCOP superfamilies and corre-
sponding confidence scores, using the FSSA algorithm as
well as sequence and structure comparison methods. It
also outputs predicted functional signatures, which indi-
cates the contribution of each position and residue type to
the function of the protein.

Comparison of function classification performance by FSSA and MAMMOTH on experimental and predicted structuresFigure 2
Comparison of function classification performance by FSSA 
and MAMMOTH on experimental and predicted structures. 
These structures correspond to selected prediction targets 
from the LiveBench 7 (LB7), LiveBench 8 (LB8), LiveBench 9 
(LB9) and PDB-CAFASP 1 (PC1) experiments. (a) represents 
those prediction targets that are assigned to the correct 
SCOP fold (regardless of superfamily) by 3D-Jury; (b) repre-
sents those prediction targets that are assigned to the cor-
rect SCOP fold but incorrect SCOP superfamily by 3D-Jury. 
The heights of the first bars ("SCOP classification") in panel 
(a) and (b) correspond to the total number of targets to be 
classified for each panel, while the following bars represent 
the number of targets assigned to correct superfamily by the 
corresponding prediction methods. The FSSA algorithm has 
better performance than the structure comparison method 
for both experimental and predicted structures, and espe-
cially for predicted structures that were generated with 
biases towards the incorrect functional categories.
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Discussion
We have demonstrated and quantitated the degree to
which proteins belonging to multi-functional fold fami-
lies hinder the accurate functional annotation of experi-
mentally derived structures as well as structures modeled
by fold recognition methods. Although this situation is
relatively well known for structures that have been exper-
imentally solved (for example, those from structural
genomics projects [29]), it has not been quantitatively
measured for structures modeled by fold recognition
methods. In addition, we have also performed extended
performance analysis of the FSSA algorithm on both
experimental and predicted structures. Our algorithm per-
forms better than structure comparison methods for func-
tional annotation, especially when using modeled
structures that are biased towards templates from different

functional categories. We further implemented the FSSA
algorithm as a webserver so that it is more publicly acces-
sible.

The current implementation of the FSSA algorithm has
issues that need to be resolved. The first issue concerns the
suitability of using SCOP superfamily to define functional
category. Although this manually curated scheme is
widely accepted as a proxy for evolutionary relationship,
there are many exceptions where proteins with the same
superfamily have different functions. Hegyi et al has
shown that the exact protein function is conserved for
67% of pairs of single domain proteins within the same
SCOP superfamily, and for 80% of pairs of multi-domain
proteins with the same combination of SCOP super-
families [30]. Therefore, the SCOP superfamily can be

Examples where global protein similarity is not adequate to predict functionFigure 3
Examples where global protein similarity is not adequate to predict function. Shown are the experimental, predicted, and tem-
plate structures for protein targets Pseudomonas aldolase (PDB identifier 1nvm-A) and Methanococcus phosphosulfolactate 
synthase (PDB identifier 1qwg-A) colored by the direction of the chain (blue to red). In both cases, the template and predicted 
structures have the correctly assigned fold but incorrectly assigned function based on similarity. The predicted structures 
resemble the template structures overall, but some local features (orientation of the second helix in upper panel and an extra 
helix-like region in lower panel, shown as black boxes in figure) are more similar to what is observed in the experimental struc-
tures. Since the FSSA algorithm uses both local sequence and structure information to determine function, it is less susceptible 
to such biases in global structure when classifying protein function.
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only used to classify broad functional categories or evolu-
tionary relationships, rather than the exact biochemical
functions for proteins. The Enzyme Commission (EC)
[31] or Gene Ontology (GO) [32] annotations are alterna-
tive classification schemes for training our methods. The
EC classification can be only applied to enzymes, and for
selected structural fold families that contain large num-
bers of enzymes, such as the TIM barrel fold family, the
performance of the FSSA algorithm is similar to what is
observed when the SCOP classification scheme is used.
Even though some of the structures in the PDB have been
assigned computationally identified GO terms through
the use of sequence or structural homology [33,34], we
cannot use these annotations to train and test our algo-
rithm until a large portion of the PDB contains experi-
mentally verified GO functional assignments. In
principle, we could also extend the FSSA algorithm to clas-
sify proteins at the family level, rather than superfamily
level, allowing for greater specificity in functional annota-
tion. However, since the current SCOP database classifies
family level relationships by sequence comparison, it may
not be a good reference dataset for training our models.
The use of meta-functional signatures from different
sources for more detailed and accurate functional classifi-
cation is being actively explored.

Another issue with the FSSA algorithm concerns our com-
bining multiple small categories into a single "OTHER"
category to train our models in a more realistic manner
(see Methods). An annotation of "OTHER" however does
not shed light on the actual function (except to say that it
is not one of the ones already known). In addition, we
have noticed that in many cases proteins in the "OTHER"
category can be assigned to the correct functional category
by the FSSA algorithm, but not by structure comparison
methods. In such cases, the good performance of the FSSA
algorithm is actually due to its ability to indicate that a
given query does not belong to one of the incorrect cate-
gories. The problem caused by the "OTHER" category will
reduce in severity as the sizes of structural databases
increase.

Several structure-based functional annotation systems
similar to ours have been developed in recent years [4-6].
For example, protein function can be inferred by scanning
a database of 3D templates (set of residues related to func-
tion) [35,36]. The Phunctioner method [37] extracts func-
tional sites from multiple structural alignments, and then
generates 3D profiles for sets of residues that determine
functional specificity. The ProKnow method [38] extracts
various sequence, structure and interaction features from
structural databases, and relates them to function by
annotation profiles. The THEMATICS method [39] identi-
fies enzyme function by computing the theoretical micro-
scopic titration curve for each residue in a protein

structure. Our approach markedly differs from these oth-
ers: (1) The contribution of each amino acid residue to
structure and to function is explicitly separated through
the analysis of local structure and local sequence. (2) The
functional importance of each residue is assigned a quan-
titative value, rather than a uniform value for selected
functionally important residues.

Overall, we envision FSSA as a complementary method to
other sequence and structure-based approaches for the
annotation of protein function. We believe that the com-
bination and integration of all these methods is necessary
to achieve broad annotation of organismal genomes and
proteomes.

Conclusion
Our results indicate that the FSSA algorithm has better
accuracy when compared to homology-based approaches
for functional classification of both experimental and pre-
dicted protein structures, in part due to its use of local, as
opposed to global, information for classifying function.
Our method can be used in combination with other
methods to achieve broad annotation of organismal
genomes and proteomes.

Methods
Data source
The domain structures and the corresponding sequences
for the SCOP database were downloaded from the
ASTRAL compendium version 1.69 [28]. Four different
sequence subsets were used, representing sequences that
have been filtered by 10%, 20%, 30% and 95% pairwise
identity by the database curators. A few structures with
large missing segments (consecutive Cα atoms more than
10Å apart) were not used in our study, since structure
alignment programs cannot reliably align them.

The prediction targets and their corresponding 3D-Jury
predictions [26] for the LiveBench and PDB-CAFASP
experiments were downloaded from their corresponding
websites at [40] and [41] in July 2005. The primary differ-
ence between the two types of experiments is that Live-
Bench uses proteins with newly deposited structures in the
Protein Data Bank (PDB) [42] as targets, while PDB-
CAFASP collects pre-released sequences (usually weeks
before the experimental structures are released) in the
PDB as targets.

Functional assignments based on predicted structural 
similarity
To investigate the correlation between successful fold rec-
ognition and correct functional assignment, we analyzed
hard prediction targets collected from the LiveBench 7,
LiveBench 8 and LiveBench 9 and PDB-CAFASP 1 experi-
ments (Table 2). The "hard" prediction targets were
Page 7 of 10
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defined by the curators of these experiments as those that
cannot obtain fold assignments via the PSI-BLAST
sequence comparison method. Based on the best hits
given by the 3D-Jury system, 86 (from a total of 163) hard
targets that belong to multi-functional fold families and
have correct fold assignments were used in our study. We
analyzed whether these 86 hard targets have correct func-
tional assignments by the 3D-Jury method. An assign-
ment of "correct" for the fold or the function indicates
that the target and its closest homologue (as predicted by
the 3D-Jury method [26] belong to the same SCOP fold or
the same SCOP superfamily, respectively.

Function classification methods
For each SCOP fold, we combined all superfamilies with
less than eight sequences into a single "OTHER" category.
We performed four-fold cross-validation experiments on
all SCOP folds that contained at least two functional cate-
gories. In each of the cross-validation experiments, 75%
of the domain structures were used as databases and the
remaining 25% structures were used as queries. Each
query was assigned to the same functional category as the
database sequence with the best "homology score" (E-
value for sequence comparison methods, Z-score for
structure comparison methods and log odds score for the
FSSA algorithm). Sequence-based methods include the
Smith-Waterman method with the FASTA package [43],
the PSI-BLAST method with the NCBI-BLAST package [44]
and the hidden Markov Model methods with the Clus-
talW program [45] and the HMMER package [46]. For the
HMM method, we compiled separate HMM models for
each superfamily alignment using hmmbuild with the
default parameters and the default hmmls algorithm. We
then calibrated these models and used hmmpfam to
assign a query sequence to the best scoring model. The
structure-based methods include the CE program [47] and
the MAMMOTH program [48]. Further details on the
function classification experiments are given elsewhere
[19].

We strive to solve real-world problems, so we try to make
our computational experiments approximate the real-
world scenario. There are several marked differences in
our evaluation procedures, compared to those used in
many publications. First, although the majority of pub-
lished methods aim at discriminating homologues from
structural analogues (binary decision problem), we aim at
assigning a given query sequence into a particular func-
tional category (multi-category classification problem),
since it reflects the practical problem biologists would face
when given a protein of unknown function. Second,
unlike others that discard functional categories that con-
tain very few sequences, we combine these small catego-
ries into a single "OTHER" category. This makes the
correct classifications harder, but it does approximate the

real situation in automated function prediction. We
believe that the results derived from our evaluation proce-
dures can better approximate the situation for functional
annotation of structural genomics targets or modeled
structures.

Structure prediction for targets in LiveBench and PDB-
CAFASP experiments
For structure prediction of targets from the LiveBench and
PDB-CAFASP experiments, we collected the alignments
between the targets and their closest homologues given by
the 3D-Jury system. We then used the scgen_mutate pro-
gram in the RAMP software suite version 0.51 [49] to con-
struct structural models in the following manner: From
the alignments generated by the 3D-Jury system, residues
that are identical in the target and the template were gen-
erated by copying atomic coordinates of the main chain
and the side chains, while residues that differ in side chain
type (excluding any insertions/deletions) were con-
structed using a minimum perturbation technique
[50,51]. The RAMP software suite was also used for struc-
ture preparation, structure superimposition and chain
extraction. The molecular visualization was conducted by
the UCSF Chimera software [52].

Availability and requirements
Project name: FSSA server; Project home page: http://pro
tinfo.compbio.washington.edu/fssa ; Operating system:
platform independent; Programming language: Perl;
License: no license required.

Authors' contributions
KW carried out the computational experiments and
drafted the manuscript. RS developed the idea, provided
intellectual guidance and mentorship. All authors read
and approved the final manuscript.

Additional material

Acknowledgements
This work was supported by a Searle Scholar Award, a NSF CAREER 
award, NSF grant DBI-0217241, and NIH grant GM068152-01. We thank 
the Samudrala group for helpful discussions and comments.

Additional File 1
Comparative evaluation of three prediction methods (FSSA, MAM-
MOTH and SSEARCH) on selected prediction targets from the LiveBench 
7, LiveBench 8, LiveBench 9 and PDB-CAFASP 1 experiments. This table 
contains the raw data that is used to generate Figure 2 in the manuscript.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-278-S1.doc]
Page 8 of 10
(page number not for citation purposes)

http://protinfo.compbio.washington.edu/fssa
http://protinfo.compbio.washington.edu/fssa
http://www.biomedcentral.com/content/supplementary/1471-2105-7-278-S1.doc


BMC Bioinformatics 2006, 7:278 http://www.biomedcentral.com/1471-2105/7/278
References
1. Cheek S, Ginalski K, Zhang H, Grishin NV: A comprehensive

update of the sequence and structure classification of
kinases.  BMC Struct Biol 2005, 5(1):6.

2. Nagano N, Orengo CA, Thornton JM: One fold with many func-
tions: the evolutionary relationships between TIM barrel
families based on their sequences, structures and functions.
J Mol Biol 2002, 321(5):741-765.

3. Nagano N, Porter CT, Thornton JM: The (betaalpha)(8) glycosi-
dases: sequence and structure analyses suggest distant evo-
lutionary relationships.  Protein Eng 2001, 14(11):845-855.

4. Watson JD, Laskowski RA, Thornton JM: Predicting protein func-
tion from sequence and structural data.  Curr Opin Struct Biol
2005, 15(3):275-284.

5. Whisstock JC, Lesk AM: Prediction of protein function from
protein sequence and structure.  Q Rev Biophys 2003,
36(3):307-340.

6. Bartlett GJ, Todd AE, Thornton JM: Inferring protein function
from structure.  In Structural Bioinformatics Edited by: Bourne PE,
Weissig H.  Wiley-Liss, Inc.; 2003:387-407. 

7. Godzik A: Fold recognition methods.  Methods Biochem Anal 2003,
44:525-546.

8. Ginalski K, Grishin NV, Godzik A, Rychlewski L: Practical lessons
from protein structure prediction.  Nucleic Acids Res 2005,
33(6):1874-1891.

9. Zhang B, Rychlewski L, Pawlowski K, Fetrow JS, Skolnick J, Godzik A:
From fold predictions to function predictions: automation of
functional site conservation analysis for functional genome
predictions.  Protein Sci 1999, 8(5):1104-1115.

10. Fetrow JS, Skolnick J: Method for prediction of protein function
from sequence using the sequence-to-structure-to-function
paradigm with application to glutaredoxins/thioredoxins and
T1 ribonucleases.  J Mol Biol 1998, 281(5):949-968.

11. Xu D, Kim D, Dam P, Shah M, Uberbacher E, Xu Y: Characteriza-
tion of protein structure and funtion at genome scale using a
computational predictiton pipeline.  In Genetic Engineering: Prin-
ciples and Methods Edited by: Setlow JK. New York, NY , Kluwer Aca-
demic/Plenum Publishers; 2003:269-293. 

12. Pawlowski K, Rychlewski L, Zhang B, Godzik A: Fold predictions
for bacterial genomes.  J Struct Biol 2001, 134(2-3):219-231.

13. Gough J, Karplus K, Hughey R, Chothia C: Assignment of homol-
ogy to genome sequences using a library of hidden Markov
models that represent all proteins of known structure.  J Mol
Biol 2001, 313(4):903-919.

14. Bujnicki JM, Elofsson A, Fischer D, Rychlewski L: LiveBench-1: con-
tinuous benchmarking of protein structure prediction serv-
ers.  Protein Sci 2001, 10(2):352-361.

15. Bujnicki JM, Elofsson A, Fischer D, Rychlewski L: LiveBench-2:
large-scale automated evaluation of protein structure pre-
diction servers.  Proteins 2001, Suppl 5:184-191.

16. Rychlewski L, Fischer D, Elofsson A: LiveBench-6: large-scale
automated evaluation of protein structure prediction serv-
ers.  Proteins 2003, 53 Suppl 6:542-547.

17. Rychlewski L, Fischer D: LiveBench-8: the large-scale, continu-
ous assessment of automated protein structure prediction.
Protein Sci 2005, 14(1):240-245.

18. Fischer D, Rychlewski L: The 2002 Olympic Games of protein
structure prediction.  Protein Eng 2003, 16(3):157-160.

19. Wang K, Samudrala R: FSSA: a novel method for identifying
functional signatures from structural alignments.  Bioinformat-
ics 2005, 21(13):2969-2977.

20. FSSA: [http://protinfo.compbio.washington.edu/fssa].  .
21. Murzin AG, Brenner SE, Hubbard T, Chothia C: SCOP: a structural

classification of proteins database for the investigation of
sequences and structures.  J Mol Biol 1995, 247(4):536-540.

22. Brenner SE, Chothia C, Hubbard TJ, Murzin AG: Understanding
protein structure: using scop for fold interpretation.  Methods
Enzymol 1996, 266:635-643.

23. Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin
AG: SCOP database in 2004: refinements integrate structure
and sequence family data.  Nucleic Acids Res 2004, 32(Database
issue):D226-9.

24. Liao L, Noble WS: Combining pairwise sequence similarity and
support vector machines for detecting remote protein evo-
lutionary and structural relationships.  J Comput Biol 2003,
10(6):857-868.

25. Kuang R, Ie E, Wang K, Siddiqi M, Freund Y, Leslie C: Profile-based
string kernels for remote homology detection and motif
extraction.  J Bioinform Comput Biol 2005, 3(3):527-550.

26. Ginalski K, Elofsson A, Fischer D, Rychlewski L: 3D-Jury: a simple
approach to improve protein structure predictions.  Bioinfor-
matics 2003, 19(8):1015-1018.

27. Ginalski K, Rychlewski L: Protein structure prediction of CASP5
comparative modeling and fold recognition targets using
consensus alignment approach and 3D assessment.  Proteins
2003, 53 Suppl 6:410-417.

28. Chandonia JM, Hon G, Walker NS, Lo Conte L, Koehl P, Levitt M,
Brenner SE: The ASTRAL Compendium in 2004.  Nucleic Acids
Res 2004, 32 Database issue:D189-92.

29. Burley SK, Almo SC, Bonanno JB, Capel M, Chance MR, Gaasterland
T, Lin D, Sali A, Studier FW, Swaminathan S: Structural genomics:
beyond the human genome project.  Nat Genet 1999,
23(2):151-157.

30. Hegyi H, Gerstein M: Annotation transfer for genomics: meas-
uring functional divergence in multi-domain proteins.
Genome Res 2001, 11(10):1632-1640.

31. Webb EC: Enzyme Nomenclature 1992.  San Diego, CA , Aca-
demic Press; 1992. 

32. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium.  Nat Genet 2000,
25(1):25-29.

33. Ponomarenko JV, Bourne PE, Shindyalov IN: Annotation of 3D
Protein Chains in PDB with GO terms via Structural Homol-
ogy.  In RECOMB San Diego, CA ; 2004. 

34. Xie L, Bourne PE: Functional Coverage of the Human Genome
by Existing Structures, Structural Genomics Targets, and
Homology Models.  PLoS Comput Biol 2005, 1(3):e31.

35. Di Gennaro JA, Siew N, Hoffman BT, Zhang L, Skolnick J, Neilson LI,
Fetrow JS: Enhanced functional annotation of protein
sequences via the use of structural descriptors.  J Struct Biol
2001, 134(2-3):232-245.

36. Stark A, Russell RB: Annotation in three dimensions. PINTS:
Patterns in Non-homologous Tertiary Structures.  Nucleic
Acids Res 2003, 31(13):3341-3344.

37. Pazos F, Sternberg MJ: Automated prediction of protein func-
tion and detection of functional sites from structure.  Proc Natl
Acad Sci U S A 2004, 101(41):14754-14759.

38. Pal D, Eisenberg D: Inference of protein function from protein
structure.  Structure (Camb) 2005, 13(1):121-130.

39. Ondrechen MJ, Clifton JG, Ringe D: THEMATICS: a simple com-
putational predictor of enzyme function from structure.  Proc
Natl Acad Sci U S A 2001, 98(22):12473-12478.

40. LiveBench: [http://bioinfo.pl/LiveBench].  .
41. PDB-CAFASP: [http://bioinfo.pl/Meta/results.pl?B=PDB-

Cafasp&V=1].  .
42. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,

Shindyalov IN, Bourne PE: The Protein Data Bank.  Nucleic Acids
Res 2000, 28(1):235-242.

43. Pearson WR: Flexible sequence similarity searching with the
FASTA3 program package.  Methods Mol Biol 2000, 132:185-219.

44. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs.  Nucleic Acids Res 1997,
25(17):3389-3402.

45. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice.  Nucleic Acids Res 1994,
22(22):4673-4680.

46. Eddy SR: Profile hidden Markov models.  Bioinformatics 1998,
14(9):755-763.

47. Shindyalov IN, Bourne PE: Protein structure alignment by incre-
mental combinatorial extension (CE) of the optimal path.
Protein Eng 1998, 11(9):739-747.

48. Ortiz AR, Strauss CE, Olmea O: MAMMOTH (matching molec-
ular models obtained from theory): an automated method
for model comparison.  Protein Sci 2002, 11(11):2606-2621.

49. RAMP: [http://software.compbio.washington.edu/ramp].  .
Page 9 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15771780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15771780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15771780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12206759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12206759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15963890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15963890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15029827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15029827
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12647403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15805122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15805122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10338021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10338021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10338021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9719646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9719646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9719646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11697912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11697912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11697912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11266621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11266621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11266621
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11835496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11835496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11835496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14579344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14579344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14579344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12702794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15860561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5918371
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7723011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8743710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8743710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16108083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16108083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16108083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14579329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14579329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14579329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10508510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11591640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11591640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16118666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16118666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16118666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824322
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15456910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15456910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11606719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11606719
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10547837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9796821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9796821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12381844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12381844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12381844


BMC Bioinformatics 2006, 7:278 http://www.biomedcentral.com/1471-2105/7/278
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

50. Hung LH, Samudrala R: PROTINFO: Secondary and tertiary
protein structure prediction.  Nucleic Acids Res 2003,
31(13):3296-3299.

51. Hung LH, Ngan SC, Liu T, Samudrala R: PROTINFO: New algo-
rithms for enhanced protein structure prediction.  Nucleic
Acids Res 2005, 33:W77-W80.

52. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM,
Meng EC, Ferrin TE: UCSF Chimera--a visualization system for
exploratory research and analysis.  J Comput Chem 2004,
25(13):1605-1612.
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15264254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15264254
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Accuracy of functional assignment based on experimental structure similarity
	Accuracy of functional assignment based on predicted structure similarity
	Performance of FSSA on experimental structures
	Performance of FSSA on predicted structures
	Performance of FSSA on predicted structures using templates from incorrect SCOP superfamilies
	The FSSA algorithm as a webserver

	Discussion
	Conclusion
	Methods
	Data source
	Functional assignments based on predicted structural similarity
	Function classification methods
	Structure prediction for targets in LiveBench and PDB- CAFASP experiments

	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

